Stochastic models of the vertical structure of turbulent gaseous disks of galaxies
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 6, pp. 72-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

On the basis of stochastic methods, a numerical simulation of the quasiequilibrium turbulent gas disk of a galaxy located in thermal and dynamic equilibrium in the field of gravity of the stellar disk is carried out. The cumulative effect on the interstellar medium (ISM) of the physical mechanisms responsible for the generation of turbulence was modeled using the spectral version of forcing, that is, by creating perturbations of the velocity field with given spectral characteristics. The influence of velocity field perturbations on the dynamics of interstellar gas was investigated in the framework of numerical experiments with different input parameters, in particular, depending on the spatial scales and pump intensity. It is established that using this approach provokes the formation of a quasi-stable vertical structure in the gas disk, which is conformed qualitatively and quantitatively with observations of ISM in the disks of spiral galaxies.
Mots-clés : galaxies
Keywords: interstellar medium, galactic disk, gas dynamics, numerical methods.
@article{VVGUM_2017_20_6_a6,
     author = {V. V. Korolev and M. A. Eremin and D. O. Bochenkov and P. P. Marchenko},
     title = {Stochastic models of the vertical structure of turbulent gaseous disks of galaxies},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {72--82},
     publisher = {mathdoc},
     volume = {20},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a6/}
}
TY  - JOUR
AU  - V. V. Korolev
AU  - M. A. Eremin
AU  - D. O. Bochenkov
AU  - P. P. Marchenko
TI  - Stochastic models of the vertical structure of turbulent gaseous disks of galaxies
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 72
EP  - 82
VL  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a6/
LA  - ru
ID  - VVGUM_2017_20_6_a6
ER  - 
%0 Journal Article
%A V. V. Korolev
%A M. A. Eremin
%A D. O. Bochenkov
%A P. P. Marchenko
%T Stochastic models of the vertical structure of turbulent gaseous disks of galaxies
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 72-82
%V 20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a6/
%G ru
%F VVGUM_2017_20_6_a6
V. V. Korolev; M. A. Eremin; D. O. Bochenkov; P. P. Marchenko. Stochastic models of the vertical structure of turbulent gaseous disks of galaxies. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 6, pp. 72-82. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_6_a6/

[1] N. G. Bochkarev, Fundamentals of Physics of the Interstellar Medium, Librokom Publ., Moscow, 2010, 352 pp.

[2] A. G. Kulikovskiy, N. V. Pogorelov, A. Yu. Semenov, Mathematical Problems of Numerical Solution of Hyperbolic Systems of Equations, Fizmatlit Publ., Moscow, 2001, 608 pp. | MR

[3] T. A. Lozinskaya, Supernovae and a Stellar Wind. Interaction with the Gas of the Galaxy, Nauka Publ., Moscow, 1986, 304 pp.

[4] A. G. Morozov, A. V. Khoperskov, Physics of Disks, Izd-vo VolGU, Volgograd, 2005, 422 pp.

[5] J. Dubinski, R. Narayan, T.G. Phillips, “Turbulence in Molecular Clouds”, The Astrophysical Journal, 448 (1995), 226–231 | DOI

[6] D. P. Cox, “The Three-Phase Interstellar Medium Revisited”, Annual Review of Astronomy Astrophysics, 43:1 (2005), 337–385 | DOI | MR

[7] B. G. Elmegreen, J. Scalo, “Interstellar Turbulence I: Observations and Processes”, Annual Review of Astronomy Astrophysics, 42:1 (2004), 211–273 | DOI

[8] Jr Fleck, C. Robert, “Scaling Relations for the Turbulent, Non-Self-gravitating, Neutral Component of the Interstellar Medium”, The Astrophysical Journal, 458 (1996), 739–741 | DOI

[9] A. Harten, “On a class of high resolution total-variation-stable finite-difference schemes”, SIAM J. Numer. Anal, 1 (1978), 1–23 | MR

[10] M. H. Heyer, C. M. Brunt, “The Universality of Turbulence in Galactic Molecular Clouds”, The Astrophysical Journal, 615:1 (2004), L45–L48 | DOI

[11] K. Kuijken, G. Gilmore, “The mass distribution in the galactic disc. I – A technique to determine the integral surface mass density of the disc near the sun”, Monthly Notices of the Royal Astronomical Society, 239 (1989), 571–603 | DOI

[12] C. F. McKee, J. P. Ostriker, “A theory of the interstellar medium: three components regulated by supernova explosions in an inhomogeneous substrate”, Astrophysical J, 218 (1977), 148–169 | DOI

[13] J. Scalo, B. G. Elmegreen, “Interstellar Turbulence II: Implications and Effects”, Annual Review of Astronomy Astrophysics, 42:1 (2004), 275–316 | DOI

[14] T. P. Snow, B. J. McCall, “Diffuse Atomic and Molecular Clouds”, Annual Review of Astronomy Astrophysics, 44:1 (2006), 367–414 | DOI | MR

[15] L. Spitzer, “Theories of the hot interstellar gas”, Annual review of astronomy and astrophysics, 28 (1990), 71–101 | DOI

[16] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer, Berlin, 1999, 721 pp. | MR | Zbl

[17] B. Van Leer, “Towards the Ultimate Conservative Difference Scheme III. Upstream-Centered Finite Difference Schemes for Ideal Compressible Flow”, J. Comput. Phys, 23 (1977), 263–275 | DOI | MR | Zbl

[18] B. Van Leer, “Towards the Ultimate Conservative Difference Scheme IV. New Approach to Numerical Convection”, J. Comput. Phys, 23 (1977), 276–299 | DOI | MR | Zbl

[19] B. Van Leer, “Towards the Ultimate Conservative Difference Scheme V. A Second Order Sequel to Godunov's Method”, J. Comput. Phys, 32 (1979), 101–136 | DOI | MR | Zbl

[20] M. G. Wolfire, E. L. Bakes, “The neutral atomic phases of the interstellar medium”, The Astrophysical Journal, 443 (1995), 152–168 | DOI