On the structural stability relative to the space of linear differential equations with periodic coefficients
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 27-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\textrm{LE}^n_\omega$ be the Banach space of linear non-homogeneous differential equations of order $n$ with $\omega$-periodic coefficients. We prove the following statements. The equation $l\in \textrm{LE}^n_\omega$ is structurally stable in the phase space $\Phi^2:=\mathbf{R}^n\times\mathbf{R}/\omega \mathbf{Z}(n\geq2)$ if and only if its multiplicators do not belong to the unit circle. The set of all structurally stable equations is everywhere dense in $\textrm{LE}^n_\omega$. The equation $l\in \textrm{LE}^n_\omega$ is structurally stable in the phase space $\bar{\Phi}^2:=\mathbf{RP}^2\times\mathbf{R}/\omega \mathbf{Z}$ if and only if its multiplicators are real, different and distinct from $\pm 1$. We describe also the topological equivalence classis of structurally stable in $\bar{\Phi}^2$ equations.
Keywords: linear differential equations, periodic coefficients, projective plane, structurally stable equations, multiplicators.
@article{VVGUM_2017_20_5_a2,
     author = {V. Sh. Roitenberg},
     title = {On the structural stability relative to the space of linear differential equations with periodic coefficients},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {27--31},
     publisher = {mathdoc},
     volume = {20},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a2/}
}
TY  - JOUR
AU  - V. Sh. Roitenberg
TI  - On the structural stability relative to the space of linear differential equations with periodic coefficients
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 27
EP  - 31
VL  - 20
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a2/
LA  - ru
ID  - VVGUM_2017_20_5_a2
ER  - 
%0 Journal Article
%A V. Sh. Roitenberg
%T On the structural stability relative to the space of linear differential equations with periodic coefficients
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 27-31
%V 20
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a2/
%G ru
%F VVGUM_2017_20_5_a2
V. Sh. Roitenberg. On the structural stability relative to the space of linear differential equations with periodic coefficients. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 5, pp. 27-31. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_5_a2/

[1] J. Palis, W. Melo, Geometric Theory of Dynamical Systems. An Introduction, Mir Publ., Moscow, 1986, 301 pp. (in Russian) | MR

[2] V. Sh. Roitenberg, “On Bifurcations of Periodic Orbits of Linear Non-Homogeneous Differential Systems With Periodic Coefficients”, Inter-university Collection of Scientific Works, Mathematics and Natural Sciences. The Theory and Practice, 11, YaSTU Publ., Yaroslavl, 2016, 66–71

[3] V. Sh. Roitenberg, “On the Structure of Space of Systems of Linear Differential Equations With Periodic Coefficients”, Science Journal of Volgograd State University. Mathematics. Physics, 1:38 (2017), 13–21 | DOI | MR