Probabilistic characterizations of essential self-adjointness and removability of singularities
Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 148-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Laplacian and its fractional powers of order less than one on the complement $\mathbb{R}^d\setminus\Sigma$ of a given compact set $\Sigma\subset \mathbb{R}^d$ of zero Lebesgue measure. Depending on the size of $\Sigma$, the operator under consideration, equipped with the smooth compactly supported functions on $\mathbb{R}^d \setminus \Sigma$, may or may not be essentially self-ajoint. We survey well-known descriptions for the critical size of $\Sigma$ in terms of capacities and Hausdorff measures. In addition, we collect some known results for certain two-parameter stochastic processes. What we finally want to point out is, that, although a priori essential self-adjointness is not a notion directly related to classical probability, it admits a characterization via Kakutani-type theorems for such processes.
Keywords: Laplacian, essential self-adjointness, removability of singularities, probabilistic characterizations, stochastic processes.
@article{VVGUM_2017_20_3_a11,
     author = {M. Hinz and S.-J. Kang and J. Masamune},
     title = {Probabilistic characterizations of essential self-adjointness and removability of singularities},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {148--162},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a11/}
}
TY  - JOUR
AU  - M. Hinz
AU  - S.-J. Kang
AU  - J. Masamune
TI  - Probabilistic characterizations of essential self-adjointness and removability of singularities
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2017
SP  - 148
EP  - 162
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a11/
LA  - en
ID  - VVGUM_2017_20_3_a11
ER  - 
%0 Journal Article
%A M. Hinz
%A S.-J. Kang
%A J. Masamune
%T Probabilistic characterizations of essential self-adjointness and removability of singularities
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2017
%P 148-162
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a11/
%G en
%F VVGUM_2017_20_3_a11
M. Hinz; S.-J. Kang; J. Masamune. Probabilistic characterizations of essential self-adjointness and removability of singularities. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 148-162. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a11/

[1] D. R. Adams, L. I. Hedberg, Function Spaces and Potential Theory, Springer, New York, 1996, 368 pp. | MR

[2] D. R. Adams, J. C. Polking, “The equivalence of two definitions of capacity”, Proc. Amer. Math. Soc., 37 (2) (1973), 529–533 | DOI | MR

[3] M. S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, G. Teschl, “A Survey on the Krein — von Neumann Extension, the Corresponding Abstract Buckling Problem, and Weyl-type Spectral Asymptotics for Perturbed Krein Laplacians in Nonsmooth Domains”, Mathematical Physics, Spectral Theory and Stochastic Analysis, Operator Theory: Adv. and Appl., 232 (2013), 1–106 | MR | Zbl

[4] Th. Aubin, Nonlinear Analysis on Manifolds: Monge-Ampère Equations, Springer, New York, 1982, 204 pp. | MR | Zbl

[5] D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators, Springer, New York, 2014, 552 pp. | MR | Zbl

[6] J. Bertoin, Lévy Processes, Cambridge Univ. Press, Cambridge, 1996, 266 pp. | MR

[7] N. Bouleau, F. Hirsch, Dirichlet Forms and Analysis on Wiener Space, De Gruyter, Berlin, 1991, 335 pp. | MR | Zbl

[8] Y. Colin de Verdière, “Pseudo-Laplaciens. I”, Ann. Inst. Fourier, 32 (1982), 275–286 | DOI | MR

[9] E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Univ. Press, Cambridge, 1989, 208 pp. | MR | Zbl

[10] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Univ. Press, Cambridge, 1995, 182 pp. | MR | Zbl

[11] J. Deny, “Théorie de la capacité dans les espaces fonctionnels”, Sem. Brelot — Choquet — Deny, 9 (1) (1964–1965), 1–13 | MR

[12] E. B. Dynkin, “A probabilistic approach to one class of nonlinear differential equations”, Probab. Theory Related Fields, 89 (1) (1991), 89–115 | DOI | MR | Zbl

[13] K. J. Falconer, Fractal Geometry, Wiley, Chichester, 1990, 366 pp. | MR | Zbl

[14] M. M. Fall, V. Felli, “Sharp essential self-adjointness of relativistic Schrödinger operators with a singular potential”, J. Funct. Anal., 267 (6) (2014), 1851–1877 | DOI | MR | Zbl

[15] M. Fukushima, Y. Oshima, M. Takeda, Dirichlet forms and symmetric Markov processes, De Gruyter, Berlin; New York, 1994, 489 pp. | MR | Zbl

[16] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36 (2) (1999), 135–249 | DOI | MR | Zbl

[17] A. Grigor'yan, Heat kernel and analysis on manifolds, AMS, Boston, MA, 2009, 482 pp. | MR | Zbl

[18] A. Grigor'yan, J. Masamune, “Parabolicity and stochastic completeness of manifolds in terms of the Green formula”, J. de Mathématiques Pures et Appliquées, 100:5 (2013), 607–632 | DOI | MR | Zbl

[19] M. Hinz, J. Masamune J., Essential self-adjointness of Laplacians and two-parameter processes, in preparation, 2017

[20] F. Hirsch, “Potential theory related to some multiparameter processes”, Pot. Anal., 4 (1995), 245–267 | DOI | MR | Zbl

[21] F. Hirsch, S. Song, “Markov properties of multiparameter processes and capacities”, Probab. Theory Relat. Fields, 103 (1995), 45–71 | DOI | MR | Zbl

[22] B. Jaye, F. Nazarov, M. C. Reguera, X. Tolsa, “The Riesz transform of codimension smaller than one and the Wolff energy, preprint”, arXiv: 1602.02821 [math.AP]

[23] J. P. Kahane, “Dimension capacitaire et dimension de Hausdorff”, Théorie du Potentiel, Lecture notes in Math, 1096 (1984), 393–400, Springer, Berlin; Heidelberg | DOI | MR

[24] J. P. Kahane, Some Random Series of Functions, Cambridge Univ. Press, Cambridge, 1985, 320 pp. | MR | Zbl

[25] D. Khoshnevisan, Multiparameter Processes: An Introduction to Random Fields, Springer, New York, 2002, 584 pp. | MR | Zbl

[26] D. Khoshnevisan, Zh. Shi, “Brownian sheet and capacity”, Ann. Probab., 27 (11) (1999), 1135–1159 | DOI | MR | Zbl

[27] D. Khoshnevisan, Y. Xiao, “Additive Lévy processes: Capacity and Hausdorff dimension”, Fractal Geometry and Stochastics III, Progress in Probab., 57, Birkhäuser, Basel, 2004, 151–172 | MR

[28] D. Khoshnevisan, Y. Xiao, “Lévy processes: Capacity and Hausdorff dimension”, Ann. Probab., 33 (3) (2005), 841–878 | DOI | MR | Zbl

[29] P. Li, L. -F. Tam, “Symmetric Green's functions on complete manifolds”, Amer. Journal Math., 109 (6) (1987), 1129–1154 | DOI | MR | Zbl

[30] J. Masamune, “Essential self adjointness of Laplacians on Riemannian manifolds with fractal boundary”, Communications in Partial Differential Equations, 24:3-4 (1999), 749–757 | DOI | MR | Zbl

[31] P. Mattila, Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambridge, 1995, 343 pp. | MR | Zbl

[32] V. Mazja, “Removable singularities of bounded solutions of quasilinear elliptic equations of any order”, J. Soviet Math., 3 (1975), 480–492 | DOI

[33] V. Mazja, Sobolev Spaces, Springer, New York, 2011, 866 pp.

[34] P. Mörters, Y. Peres, Brownian Motion, Cambridge Univ. Press, Cambridge, 2010, 416 pp. | MR | Zbl

[35] E. Perkins, “Polar sets and multiple points for super-Brownian motion”, Ann. of Probab., 18 (2) (1990), 453–491 | DOI | MR | Zbl

[36] E. A. Perkins, “Dawson-Watanabe Superprocesses and Measure-Valued Diffusions”, Ecole d' Eté de Probabilités de Saint-Flour XXIX-1999, Lecture Notes Math., 1781, Springer, Berlin, 2002, 125-329 | MR | Zbl

[37] M. Reed, B. Simon, Methods of Modern Mathematical Physics, v. 1-2, Acad. Press, San Diego, 1980, 400 pp. | MR | Zbl

[38] K. -I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge Univ. Press, Cambridge, 1999, 486 pp. | MR

[39] M. Takeda, “The maximum Markovian self-adjoint extensions of generalized Schrödinger operators”, J. Math. Soc. Japan, 44 (1) (1992), 113–130 | DOI | MR | Zbl

[40] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publ. Company, Amsterdam; New York; Oxford, 1978, 532 pp. | MR | Zbl

[41] H. Triebel, Fractals and Spectra, Birkhäuser, Basel, 1997, 272 pp. | MR | Zbl