Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2017_20_3_a10, author = {E. A. Mazepa}, title = {On solvability of boundary value problems of the {Poisson} equation on non-compact {Riemannian} manifolds}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {136--147}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a10/} }
TY - JOUR AU - E. A. Mazepa TI - On solvability of boundary value problems of the Poisson equation on non-compact Riemannian manifolds JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2017 SP - 136 EP - 147 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a10/ LA - ru ID - VVGUM_2017_20_3_a10 ER -
%0 Journal Article %A E. A. Mazepa %T On solvability of boundary value problems of the Poisson equation on non-compact Riemannian manifolds %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2017 %P 136-147 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a10/ %G ru %F VVGUM_2017_20_3_a10
E. A. Mazepa. On solvability of boundary value problems of the Poisson equation on non-compact Riemannian manifolds. Matematičeskaâ fizika i kompʹûternoe modelirovanie, Tome 20 (2017) no. 3, pp. 136-147. http://geodesic.mathdoc.fr/item/VVGUM_2017_20_3_a10/
[1] D. Gilbarg, M. Trudinger, Elliptic Partial Differential Equations of Second Order, Nauka Publ., Moscow, 1989, 464 pp. | MR
[2] A. A. Grigor'yan, “On the existence of positive fundamental solution of the Laplace equation on Riemannian manifolds”, Sbornik: Mathematics, 128:3 (1985), 354–363 | MR | Zbl
[3] A. A. Grigor'yan, “Bounded solutions of stationary Shrodinger equatuion on non-compact Riemannian manifolds”, Trudy seminara I.G. Petrovskogo, 1989, no. 14, 66–77 | Zbl
[4] A. A. Grigor'yan, N. S. Nadirashvili, “Liouville-type theorems and external bound problems”, Soviet Mathematics, 1987, no. 5, 25–33
[5] S. A. Korolkov, A. G. Losev, “Solutions for elliptic equations on Riemannian manifolds with ends”, Science Journal of VolSU. Mathematics. Physics, 2011, no. 1 (14), 23–40
[6] A. G. Losev, “On the solvability of the Dirichlet problem for Poisson equation on some noncompact Riemannian manifolds”, (to appear), Differential equations, 2017
[7] A. G. Losev, E. A. Mazepa, “About asimptotic property of solutions of elliptic equation on non compact Riemannian manifolds”, Soviet Mathematics, 1999, no. 6, 41–49 | Zbl
[8] E. A. Mazepa, “On the solvability of boundary value problems for semilinear elliptic equations on noncompact Riemannian manifolds”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 4 (23), 36–44
[9] E. A. Mazepa, “Boundary value problems for the stationary equation Schrödinger on Riemannian manifolds”, Siberian Mathematical Journal, 43:3 (2002), 591–599 | MR | Zbl
[10] E. A. Mazepa, “Boundary Value Problems and Liouville theorems for semilinear elliptic equations on Riemannian manifolds”, Russian Mathematics, 514:3 (514) (2005), 59–66 | MR
[11] E. A. Mazepa, “On the existence of entire solutions of a semilinear elliptic equation on noncompact Riemannian manifolds”, Mat. zametki, 81:1 (2007), 153–156 | DOI | MR | Zbl
[12] M. T. Anderson, “The Dirichlet problem at infinity for manifolds with negative curvature”, J. Diff. Geom., 18:4 (1983), 701–721 | DOI | MR
[13] S. Y. Cheng, S. T. Yau, “Differential equations on Riemannian manifolds and their geometric applications”, Comm. Pure and Appl. Math., 28:3 (1975), 333–354 | DOI | MR | Zbl
[14] A. Grigor'yan, “Analytic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bulletin of Amer. Math. Soc., 1999, no. 36, 135–249 | DOI | MR | Zbl
[15] A. Grigor'yan, I. Verbitsky, “Pointwise estimates of solutions to semilinear elliptic equations and inequalities”, 2015, arXiv: 1511.03188 [math.AP]
[16] A. G. Losev, E. A. Mazepa, V. Y. Chebanenko, “Unbounded solutions of the stationary Schrodinger equation on Riemannian manifolds”, CMFT, 3:2 (2003), 443–451 | MR | Zbl
[17] P. Mastrolia, D. D. Monticelly,F. Punzo, “Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds”, 2015, arXiv: 1511.09023 [math.AP] | MR
[18] M. Murata, “Positive harmonic functions on rotationary symmetric Riemannian manifolds”, Potential Theory, 1992, 251–259 | MR | Zbl
[19] L. Ni, Y. Shi, L-F. Tam, “Poisson equation, Poincare — Lelong equation and curvature decay on complete Kahler manifolds”, J. Diff. Geom., 57 (2001), 733–388 | MR
[20] L. Sario, M. Nakai, C. Wang, L. O. Chung, Classification theory of Riemannian manifolds, 1977, 498 pp. | MR
[21] D. Sullivan, “The Dirichlet problem at infinity for a negatively curved manifolds”, J. Diff. Geom., 18:4 (1983), 722–732 | MR