On an overdetermined system
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 99-107.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the overdetermined system of second order differential equations with a singular point. The system of equations (1) consists of a hyperbolic equation and two partial differential equations of second order with a singular point. The first equation of the system (1) under certain conditions on the coefficients can be represented as a superposition of two first order differential operators. Solving this equation and substituting its value in the second and third equation to get together conditions on the coefficients and right-hand sides. On the basis of the conditions of independence from the left side of the variable $y$, to determine the arbitrary function $\varphi_1(x)$ we obtain the ordinary differential equation of the first order. Other arbitrary function $\psi_1(y)$ is determined from the condition that the right side of independence in appropriate, limiting transition. Thus, the obtained representation of the diversity of solutions using two arbitrary constants and studied properties of the resulting decisions.
Keywords: singular point, rectangle, variety of solutions, overdetermined system, unknown function.
@article{VVGUM_2016_6_a9,
     author = {Ph. M. Shamsudinov},
     title = {On an overdetermined system},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {99--107},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a9/}
}
TY  - JOUR
AU  - Ph. M. Shamsudinov
TI  - On an overdetermined system
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 99
EP  - 107
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a9/
LA  - ru
ID  - VVGUM_2016_6_a9
ER  - 
%0 Journal Article
%A Ph. M. Shamsudinov
%T On an overdetermined system
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 99-107
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a9/
%G ru
%F VVGUM_2016_6_a9
Ph. M. Shamsudinov. On an overdetermined system. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 99-107. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a9/

[1] L.\;G. Mikhaylov, Some Partial Differential Systems of Equations and Partial Division of Two Unknown Functions, Donish Publ., Dushanbe, 1986, 115 pp. | MR

[2] N.\;R. Radzhabov, An Introduction to the Theory of Partial Differential Equations with Super-Singular Coefficients, Izd-vo TGU Publ., Dushanbe, 1992, 236 pp.

[3] N.\;R. Radzhabov, Integral Equations of Voltare Type with Fixed Border and Internal Singular and Super-Singular Kernels and Their Applications, Devashtich Publ., Dushanbe, 2007, 221 pp.

[4] N.\;R. Radzhabov, M. Elsaed Abdel Aal, Overdetermined Linear System of the Second Order with Singular and Super Singular Lines, Lap Lambert Academic Publishing, Saarbrücken, 2011, 234 pp.

[5] Zh.\;N. Tasmambetov, The Normal Solution of Special Systems of the Partial Differential Equations of Second Order with Polynomial Coefficients, abstract of Diss. Doctor of Physical and Mathematical Sciences, Almaty, 2004, 41 pp.

[6] F.\;M. Shamsudinov, “On an Overdetermined System of Second Order Differential Equations with Singular Point”, Tr. mat. tsentra im. N.\;I. Lobachevskogo, 49, Izd-vo Kazan. mat. o-va Publ., Kazan, 2014, 335–339

[7] P. Appell, J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite, Gauthier-Villars, Paris, 1926, 434 pp.

[8] E.\;J. Wilczynski, Projective Differential Geometry of Curves and Ruled Surfaces, B. G. Teubner, Leipzig, 1906, 324 pp. | MR | Zbl