Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_6_a8, author = {B. E. Levitsii and A. E. Biryuk}, title = {Comparison of solutions of nonlinear differential equations with loaded level sets}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {81--98}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a8/} }
TY - JOUR AU - B. E. Levitsii AU - A. E. Biryuk TI - Comparison of solutions of nonlinear differential equations with loaded level sets JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2016 SP - 81 EP - 98 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a8/ LA - ru ID - VVGUM_2016_6_a8 ER -
%0 Journal Article %A B. E. Levitsii %A A. E. Biryuk %T Comparison of solutions of nonlinear differential equations with loaded level sets %J Matematičeskaâ fizika i kompʹûternoe modelirovanie %D 2016 %P 81-98 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a8/ %G ru %F VVGUM_2016_6_a8
B. E. Levitsii; A. E. Biryuk. Comparison of solutions of nonlinear differential equations with loaded level sets. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 81-98. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a8/
[1] V.\;A. Zorich, Mathematical Analysis, MCCME, M., 2007, 1458 pp.
[2] A.\;N. Kolmogorov, S.\;V. Fomin, Introductory Real Analysis, Nauka Publ., M., 1989, 624 pp.
[3] I.\;P. Natanson, Theory of Functions of a Real Variable, Nauka Publ., M., 1974, 480 pp.
[4] G. Pólya, G. Szegö, Isoperimetric Inequalities in Mathematical Physics, FML Publ., M., 1962, 336 pp.
[5] G. Federer, Geometric Measure Theory, Nauka Publ., M., 1987, 760 pp.
[6] G. Hadwiger, Vorlesungen Über Inhalt, Oberfläche und Isoperimetrie, Nauka Publ., M., 1966, 416 pp.
[7] A. Alvino, S. Matarasso, G. Trombetti, “Risultati di simmetrizzazione per soluzioni di disequazioni variazionali”, Le Matematiche, 54:3 (1999), 15–28 | MR | Zbl
[8] I. Bihari, “A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations”, Acta Math. Acad. Sci. Hungar., 7:1 (1956), 81–94 | DOI | MR | Zbl
[9] K.\;M. Chong, N.\;M. Rice, Equimeasurable Rearrangements of Functions, Queen's Papers in Pure and Appl. Math, 28, Queen's University, Kingston–Ontario–Canada, 1971, 177 pp. | MR | Zbl
[10] A. Alvino, G. Trombetti, P.\;L. Lions, S. Matarasso, “Comparison results for solutions of elliptic problems via symmetrization”, Annales de l'IHP Analyse non linéaire, 16:2 (1999), 167–188 | DOI | MR | Zbl
[11] A. Alvino, G. Trombetti, J.\;I. Diaz, P.\;L. Lions, “Elliptic equations and Steiner symmetrization”, Communications on pure and applied mathematics, 49:3 (1996), 217–236 | 3.0.CO;2-G class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[12] W.\;H. Fleming, R. Rishel, “An integral formula for total gradient variation”, Archiv der Mathematik, 11:1 (1960), 218–222 | DOI | MR | Zbl
[13] S. Kesavan, Symmetrization and applications, World Scientific, New Jersey, 2006, 148 pp. | MR | Zbl
[14] C. Maderna, S. Salsa, “Dirichlet problem for elliptic equations with nonlinear first order terms: a comparison result”, Annali di Matematica pura ed applicata, 148:1 (1987), 277–288 | DOI | MR | Zbl
[15] G. Talenti, “Elliptic Equations and Rearrangements”, Ann. Scuola Norm. Sup. Pisa, Cl. Sci., IV. Ser., 3:4 (1976), 667–718 | MR