Complex rigidity of Teichm\"uller spaces
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 108-118.

Voir la notice de l'article provenant de la source Math-Net.Ru

We outline old and new results concerning the well-known problems in the Teichmüller space theory, i.e., whether these spaces are starlike in the Bers holomorphic embedding and whether any Teichmüller space of dimension greater than $1$ is biholomorhically equivalent to bounded convex domain in a complex Banach space.
Keywords: Teichmüller spaces, holomorphic embeddings, Schwarzian derivative, starlike, holomorphic section, conformally rigid domain, uniformly convex Banach space.
Mots-clés : convex domain
@article{VVGUM_2016_6_a10,
     author = {S. L. Krushkal'},
     title = {Complex rigidity of {Teichm\"uller} spaces},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {108--118},
     publisher = {mathdoc},
     number = {6},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a10/}
}
TY  - JOUR
AU  - S. L. Krushkal'
TI  - Complex rigidity of Teichm\"uller spaces
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2016
SP  - 108
EP  - 118
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a10/
LA  - en
ID  - VVGUM_2016_6_a10
ER  - 
%0 Journal Article
%A S. L. Krushkal'
%T Complex rigidity of Teichm\"uller spaces
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2016
%P 108-118
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a10/
%G en
%F VVGUM_2016_6_a10
S. L. Krushkal'. Complex rigidity of Teichm\"uller spaces. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 108-118. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a10/

[1] W. Abikoff, “A geometric property of Bers' embedding of the Teichmüller space”, Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud., 97, Princeton University Press, Princeton–N. J., 1981, 3–5 | MR

[2] K. Astala, “Selfsimilar zippers”, Holomorphic Functions and Moduli, v. I, Springer, New York, 1988, 61–73 | DOI | MR

[3] L. Bers, I. Kra, A Crash Course on Kleinian Groups, Lecture Notes in Mathematics, 400, Springer, Berlin, 1974, 134 pp. | DOI | MR | Zbl

[4] L. Bers, “On a theorem of Abikoff”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10 (1985), 83–87 | DOI | MR | Zbl

[5] J.\;G. Clunie, D.\;J. Hallenbeck, T.\;H. MacGregor, “A peaking and interpolation problem for univalent functions”, J. Math. Anal. Appl., 111 (1985), 559–570 | DOI | MR | Zbl

[6] C.\;J. Earle, I. Kra, “On sections of some holomorphic families of closed Riemann surfaces”, Acta Math., 137 (1976), 49–79 | DOI | MR | Zbl

[7] S.\;L. Krushkal, “On shape of Hilbertian embedding of universal Teichmüller space”, Transactions of Inst. of Math. Nat. Acad. Sciences of Ukraine (Zb. Pr. Inst. Mat. NAN Ukraine), 12:3 (2015), 160–163 | MR | Zbl

[8] S.\;L. Krushkal, “On shape of Teichmüller spaces”, Journal of Analysis, 22 (2014), 69–76 | MR | Zbl

[9] S.\;L. Krushkal, “On the question of the structure of the universal Teichmüller space”, Soviet Math. Dokl., 38 (1989), 435–437 | MR | Zbl

[10] S.\;L. Krushkal, Quasiconformal Mappings and Riemann Surfaces, Wiley, New York, 1979, 332 pp. | MR | Zbl

[11] S.\;L. Krushkal, “Schwarzian derivative and complex Finsler metrics”, Contemporary Mathematics, 382, 2005, 243–262 | DOI | MR | Zbl

[12] S.\;L. Krushkal, “Teichmüller spaces are not starlike”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 20 (1995), 167–173 | MR | Zbl

[13] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987, 260 pp. | MR | Zbl

[14] S. Nag, The Complex Analytic Theory of Teichmüller Spaces, Wiley, New York, 1988, 427 pp. | MR | Zbl

[15] W.\;P. Thurston, “Zippers and univalent functions”, The Bieberbach Conjecture, Proceedings of the Symposium on the Occasion of its Proof, Amer. Math. Soc., Providence, R. I., 1986, 185–197 | MR

[16] M. Toki, “On non-starlikeness of Teichmüller spaces”, Proc. Japan Acad. Ser. A, 69 (1993), 58–60 | DOI | MR | Zbl

[17] P. Tukia, “The space of quasisymmetric mappings”, Math. Scand., 40 (1977), 127–142 | DOI | MR | Zbl

[18] I.\;V. Zhuravlev, “A topological property of Teichmüller space”, Math. Notes, 38 (1985), 803–804 | DOI | MR | Zbl