Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2016_6_a10, author = {S. L. Krushkal'}, title = {Complex rigidity of {Teichm\"uller} spaces}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {108--118}, publisher = {mathdoc}, number = {6}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a10/} }
S. L. Krushkal'. Complex rigidity of Teichm\"uller spaces. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 6 (2016), pp. 108-118. http://geodesic.mathdoc.fr/item/VVGUM_2016_6_a10/
[1] W. Abikoff, “A geometric property of Bers' embedding of the Teichmüller space”, Riemann Surfaces and Related Topics, Proceedings of the 1978 Stony Brook Conference, Ann. of Math. Stud., 97, Princeton University Press, Princeton–N. J., 1981, 3–5 | MR
[2] K. Astala, “Selfsimilar zippers”, Holomorphic Functions and Moduli, v. I, Springer, New York, 1988, 61–73 | DOI | MR
[3] L. Bers, I. Kra, A Crash Course on Kleinian Groups, Lecture Notes in Mathematics, 400, Springer, Berlin, 1974, 134 pp. | DOI | MR | Zbl
[4] L. Bers, “On a theorem of Abikoff”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 10 (1985), 83–87 | DOI | MR | Zbl
[5] J.\;G. Clunie, D.\;J. Hallenbeck, T.\;H. MacGregor, “A peaking and interpolation problem for univalent functions”, J. Math. Anal. Appl., 111 (1985), 559–570 | DOI | MR | Zbl
[6] C.\;J. Earle, I. Kra, “On sections of some holomorphic families of closed Riemann surfaces”, Acta Math., 137 (1976), 49–79 | DOI | MR | Zbl
[7] S.\;L. Krushkal, “On shape of Hilbertian embedding of universal Teichmüller space”, Transactions of Inst. of Math. Nat. Acad. Sciences of Ukraine (Zb. Pr. Inst. Mat. NAN Ukraine), 12:3 (2015), 160–163 | MR | Zbl
[8] S.\;L. Krushkal, “On shape of Teichmüller spaces”, Journal of Analysis, 22 (2014), 69–76 | MR | Zbl
[9] S.\;L. Krushkal, “On the question of the structure of the universal Teichmüller space”, Soviet Math. Dokl., 38 (1989), 435–437 | MR | Zbl
[10] S.\;L. Krushkal, Quasiconformal Mappings and Riemann Surfaces, Wiley, New York, 1979, 332 pp. | MR | Zbl
[11] S.\;L. Krushkal, “Schwarzian derivative and complex Finsler metrics”, Contemporary Mathematics, 382, 2005, 243–262 | DOI | MR | Zbl
[12] S.\;L. Krushkal, “Teichmüller spaces are not starlike”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 20 (1995), 167–173 | MR | Zbl
[13] O. Lehto, Univalent Functions and Teichmüller Spaces, Springer-Verlag, New York, 1987, 260 pp. | MR | Zbl
[14] S. Nag, The Complex Analytic Theory of Teichmüller Spaces, Wiley, New York, 1988, 427 pp. | MR | Zbl
[15] W.\;P. Thurston, “Zippers and univalent functions”, The Bieberbach Conjecture, Proceedings of the Symposium on the Occasion of its Proof, Amer. Math. Soc., Providence, R. I., 1986, 185–197 | MR
[16] M. Toki, “On non-starlikeness of Teichmüller spaces”, Proc. Japan Acad. Ser. A, 69 (1993), 58–60 | DOI | MR | Zbl
[17] P. Tukia, “The space of quasisymmetric mappings”, Math. Scand., 40 (1977), 127–142 | DOI | MR | Zbl
[18] I.\;V. Zhuravlev, “A topological property of Teichmüller space”, Math. Notes, 38 (1985), 803–804 | DOI | MR | Zbl