Keywords: the number of triangulations, the tree of triangulations, memory volume estimate, Catalan number, convex hull.
@article{VVGUM_2016_5_a8,
author = {V. V. Popov},
title = {On the parallel algorithm of numbering of a},
journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
pages = {85--96},
year = {2016},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a8/}
}
V. V. Popov. On the parallel algorithm of numbering of a. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 5 (2016), pp. 85-96. http://geodesic.mathdoc.fr/item/VVGUM_2016_5_a8/
[1] V.\;A. Klyachin, V.\;V. Popov, “Chanes Method for Storage of Multidimensional Triangulation”, Science Journal of Volgograd State University. Mathematics. Physics, 2013, no. 2 (19), 71–79
[2] V.\;V. Popov, “On Algorithm of Numbering of Triangulations”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 5 (24), 40–45
[3] V.\;V. Popov, “On Algorithm of Numbering the Spanning Trees in a Connected Graph”, Science Journal of Volgograd State University. Mathematics. Physics, 2015, no. 2 (27), 6–16
[4] V.\;V. Popov, “On Parallel Algorithm of Numbering of the Triangulations of a Finite Subset of the Plane”, Geometricheskiy analiz i ego prilozheniya, Materialy III Mezhdunarodnoy shkolykonferentsii, Izd-vo VolGU, Volgograd, 2016, 168–170 | Zbl
[5] F. Preparata, M. Shamos, Computational Geometry: An Introduction, Mir Publ., M., 1989, 478 pp.
[6] A.\;V. Skvortsov, Delaunay Triangulation and Its Application, Izd-vo Tom. un-ta, Tomsk, 2002, 128 pp.
[7] O. Aichholzer, T. Hackl, B. Vogtenhuber, C. Huemer, F. Hurtado, H. Krasser, “On the Number of Plane Geometrical Graphs”, Graphs and Combinatorics, 23 (2007), 67–84 | DOI | MR | Zbl
[8] F. Hurtado, M. Noy, “Graph of triangulations of a convex polygon and tree of triangulations”, Computational Geometry, 13 (1999), 179–188 | DOI | MR | Zbl
[9] G. Polia, “On picture-writing”, The American Mathematical Monthly, 63 (1956), 689–697 | DOI | MR