Development of the program for numerical gasdynamic modeling on the basis of Lagrange --- Euler scheme the LES --- ASG
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2015), pp. 30-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the authors compare the two types of solving the transport equation with inhomogeneous distribution of velocity, namely LES (Lagrange — Euler scheme) and MUSCL (Monotonic Upstream-Centered Scheme). Computational experiments LES schemes and MUSCL, using a piecewise linear and piecewise constant reconstruction, for solving the transport equation with inhomogeneous distribution of velocity. Note that both circuits coincide with $\mathrm{U = const}$, as well as circuitry to implement good smooth transfer profiles. In the calculations limiter minmod is used. According to the results of comparison circuits to determine the effectiveness, as well as accuracy with respect to the computational cost for the accuracy of the order of equal circuits. The authors study the results of calculations of numerical schemes for LES and MUSCL nets dimension $300$, $600$, $1\,200$, $2\,400$, $4\,800$ and $9\,600$. According to the research we can assume that the scheme LES and MUSCL equally well applicable for modeling the transport equation. According to the results of the work we made sure that LES scheme and its subsequent development will continue on the basis of the scheme LES-ASG.
Keywords: numerical schemes, ASG, MUSCL
Mots-clés : LES, Lagrange — Euler scheme.
@article{VVGUM_2015_1_a4,
     author = {A. V. Belousov and S. S. Khrapov},
     title = {Development of the program for numerical gasdynamic modeling on the basis of {Lagrange} --- {Euler} scheme the {LES} --- {ASG}},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {30--39},
     publisher = {mathdoc},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a4/}
}
TY  - JOUR
AU  - A. V. Belousov
AU  - S. S. Khrapov
TI  - Development of the program for numerical gasdynamic modeling on the basis of Lagrange --- Euler scheme the LES --- ASG
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2015
SP  - 30
EP  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a4/
LA  - ru
ID  - VVGUM_2015_1_a4
ER  - 
%0 Journal Article
%A A. V. Belousov
%A S. S. Khrapov
%T Development of the program for numerical gasdynamic modeling on the basis of Lagrange --- Euler scheme the LES --- ASG
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2015
%P 30-39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a4/
%G ru
%F VVGUM_2015_1_a4
A. V. Belousov; S. S. Khrapov. Development of the program for numerical gasdynamic modeling on the basis of Lagrange --- Euler scheme the LES --- ASG. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 1 (2015), pp. 30-39. http://geodesic.mathdoc.fr/item/VVGUM_2015_1_a4/

[1] A.\;V. Aliev, G.\;A. Tarnavskiy, “The hierarchical SPH-method for mathematical modeling in gravitational gas dynamics”, Sib. elektron. mat. izv., 2007, 376–434 | MR | Zbl

[2] A.\;A. Belosludtsev, D.\;V. Gusarov, M.\;A. Eremin, N.\;M. Kuzmin, S.\;A. Khoperskov, S.\;S. Khrapov, “Information and computer system for modeling the dynamics of impurities from the chemical industry”, Science Journal of Volgograd State University. Mathematics. Physics, 2009, no. 12, 95–102

[3] M.\;A. Eremin, A.\;V. Khoperskov, S.\;A. Khoperskov, “A finite-volume scheme for integrating the equations of hydrodynamics”, Izv. Volgogr. gos. tekhn. un-ta, 2010, no. 6, Vyp. 8, 24–27

[4] A.\;G. Zhumaliev, S.\;S. Khrapov, “Numerical scheme cSPH — TVD: simulation of the shock front”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 1(16), 60–67

[5] N.\;M. Kuzmin, V.\;V. Mustsevoy, S.\;S. Khrapov, “Numerical Modeling of the Evolution of Unstable Modes of Jets from Young Stellar Objects”, Astronomy Reports, 84:12 (2007), 1089–1098

[6] A.\;G. Kulikovskiy, N.\;V. Pogorelov, A.\;Yu. Semenov, Mathematical problems in the numerical solution of hyperbolic systems, FIZMATLIT Publ., M., 2001, 608 pp. | MR

[7] N.\;M. Kuzmin, A.\;V. Belousov, T.\;S. Shushkevich, S.\;S. Khrapov, “Numerical scheme CSPH — TVD: study of the impact limiters slopes”, Science Journal of Volgograd State University. Mathematics. Physics, 2014, no. 1(20), 22–33 | MR

[8] A.\;V. Pisarev, S.\;S. Khrapov, A.\;A. Voronin, T.\;A. Dyakonova, E.\;A. Tsirkova, “Features of the dynamics of flooding of the Volga-Akhtuba floodplain, depending on the mode of evaporation and infiltration”, Science Journal of Volgograd State University. Mathematics. Physics, 2012, no. 1(16), 36–41

[9] A.\;V. Pisarev, S.\;S. Khrapov, E.\;O. Agafonnikova, A.\;V. Khoperskov, “Numerical model of dynamics of surface waters in line with the Volga: the estimated coefficient of roughness”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 2013, no. 1, 114–130

[10] S.\;S. Khrapov, A.\;V. Khoperskov, N.\;M. Kuzmin, A.\;V. Pisarev, I.\;A. Kobelev, “Numerical scheme for modeling the dynamics of surface water based on the combined SPH — TVD–approach”, Vychislitelnye metody i programmirovanie, 12:1 (2011), 282–297

[11] A.\;V. Khoperskov, M.\;A. Eremin, S.\;A. Khoperskov, M.\;A. Butenko, A.\;G. Morozov, “Dynamics of Gaseous Disks in a Non-axisymmetric Dark Halo”, Astronomy Reports, 89:1 (2012), 19–31

[12] A.\;V. Khoperskov, S.\;S. Khrapov, A.\;V. Pisarev, A.\;A. Voronin, M.\;V. Eliseeva, I.\;A. Kobelev, “The task of managing the hydrological regime in the ecological and economic system «Volga Hydroelectric Power Station — Volga–Akhtuba floodplain». Part 1. Modeling the dynamics of surface water during spring flood”, Control Sciences, 2012, no. 5, 18–25

[13] S. Khrapov, A. Pisarev, I. Kobelev, A. Zhumaliev, E. Agafonnikova, A. Losev, A. Khoperskov, “The Numerical Simulation of Shallow Water: Estimation of the Roughness Coefficient on the Flood Stage”, Advances in Mechanical Engineering, 2013 (2013), 787016 http://ade.sagepub.com/content/5/787016.full.pdf