About linear preimages of continuous maps, that preserve orientation of triangles
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 56-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article describes the differential properties of continuous mappings $f:D\to R^n$, which retain the orientation of some simplexes in advance of this subset of $S(D)$. Such mappings represent a natural generalization of the class of monotone functions of one variable. In this paper we prove that the mapping monotonic in this sense have to be affine. In addition, we prove a generalization of this result, provided that the map preserves the orientation of an open family of simplexes. As a consequence, we obtain a result on the structure of the inverse image of a straight monotone mapping of plane. Namely, the main result is Theorem. Тheorem Let $f:D\to R^2$ be mapping preserves the orientation of triangles with obtuse angle $\gamma, \pi/2\alpha\gamma\beta\pi$. Then if the inverse image of a straight line $L$ is nowhere dense, then $L$ is union of a finite or countable number of locally Lipschitz curves.
Mots-clés : orientation of triangle, orientation of simplex
Keywords: linear maps, set contingency, monotone mappings.
@article{VVGUM_2014_3_a6,
     author = {V. A. Klyachin and N. A. Ch{\cyre}ban{\cyre}nko},
     title = {About linear preimages of continuous maps, that  preserve orientation of triangles},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {56--60},
     publisher = {mathdoc},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a6/}
}
TY  - JOUR
AU  - V. A. Klyachin
AU  - N. A. Chеbanеnko
TI  - About linear preimages of continuous maps, that  preserve orientation of triangles
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 56
EP  - 60
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a6/
LA  - ru
ID  - VVGUM_2014_3_a6
ER  - 
%0 Journal Article
%A V. A. Klyachin
%A N. A. Chеbanеnko
%T About linear preimages of continuous maps, that  preserve orientation of triangles
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 56-60
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a6/
%G ru
%F VVGUM_2014_3_a6
V. A. Klyachin; N. A. Chеbanеnko. About linear preimages of continuous maps, that  preserve orientation of triangles. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 3 (2014), pp. 56-60. http://geodesic.mathdoc.fr/item/VVGUM_2014_3_a6/

[1] V.\;M. Miklyukov, Introduction to Nonsmooth Analysis, Izd-vo VolGU, Volgograd, 2008, 422 pp.

[2] I.\;P. Natanson, Theory of Functions of Real Variable, Nauka Publ., M., 1974, 480 pp.

[3] S. Saks, The Theory of Integral, Izd-vo inostr. lit., M., 1949, 495 pp.

[4] N.\;A. Chebanenko, V.\;A. Klyachin, “About Linear Prototypes of Continuous Maps, Which Preserve Orientation of Triangles”, Nauchnaya diskussiya: voprosy matematiki, fiziki, khimii, biologii, 8, 2013, 6–10