Approximating the function defined by discrete and integral conditions
Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 42-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article deals with the problem of approximating the function in relation to which the values are known at some points (discrete conditions) and the values of integrals on certain intervals (integral conditions). The article states the task of finding a polynomial of a defined degree which brings nearer the defined conditions in the best way. The authors embed the dimensionless weight factor which allows to take into account the contribution of integral conditions into the total deficiency. The idea of this solution is based on the application of Gauss quadratures. The general formulas for finding the coefficients of approximating polynomials are obtained. The numerical examples illustrate the effect of weight factor on the result.
Keywords: approximation, integral conditions, weight factor, LSM (Least Square Method).
Mots-clés : Gauss quadrature, discrete conditions
@article{VVGUM_2014_2_a5,
     author = {H. V. Velichko and V. M. Malkina},
     title = {Approximating the function defined by discrete and integral conditions},
     journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie},
     pages = {42--50},
     publisher = {mathdoc},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a5/}
}
TY  - JOUR
AU  - H. V. Velichko
AU  - V. M. Malkina
TI  - Approximating the function defined by discrete and integral conditions
JO  - Matematičeskaâ fizika i kompʹûternoe modelirovanie
PY  - 2014
SP  - 42
EP  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a5/
LA  - ru
ID  - VVGUM_2014_2_a5
ER  - 
%0 Journal Article
%A H. V. Velichko
%A V. M. Malkina
%T Approximating the function defined by discrete and integral conditions
%J Matematičeskaâ fizika i kompʹûternoe modelirovanie
%D 2014
%P 42-50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a5/
%G ru
%F VVGUM_2014_2_a5
H. V. Velichko; V. M. Malkina. Approximating the function defined by discrete and integral conditions. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 42-50. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a5/

[1] O.\;V. Velichko, V.\;M. Malkina, “The Geometrical Interpretation of the Conditions of Minimal Polynomial Existence with Defined Characteristics”, Applied Geometry and Engineering Graphics, Proceedings of TSAU, 55, no. 4, 2012, 37–41

[2] N.\;N. Golovanov, Geometric Modeling, Fizmatlit Publ., M., 2002, 472 pp.

[3] V.\;I. Krylov, L.\;T. Shulgina, Reference Book on Numerical Integration, Nauka Publ., M., 1966, 370 pp.

[4] V.\;M. Malkina, O.\;V. Titova, “Geometric Modeling of Discretely Presented Curves with Defined Integral Properties”, Naukoviy visnik TDATU, 2011, no. 1, 65–68