Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VVGUM_2014_2_a4, author = {I. A. Bashlaeva and T. V. Sht{\cyre}lmakh}, title = {Some issues of complexity of cyclic games solution on graphs}, journal = {Matemati\v{c}eska\^a fizika i kompʹ\^uternoe modelirovanie}, pages = {31--41}, publisher = {mathdoc}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a4/} }
TY - JOUR AU - I. A. Bashlaeva AU - T. V. Shtеlmakh TI - Some issues of complexity of cyclic games solution on graphs JO - Matematičeskaâ fizika i kompʹûternoe modelirovanie PY - 2014 SP - 31 EP - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a4/ LA - ru ID - VVGUM_2014_2_a4 ER -
I. A. Bashlaeva; T. V. Shtеlmakh. Some issues of complexity of cyclic games solution on graphs. Matematičeskaâ fizika i kompʹûternoe modelirovanie, no. 2 (2014), pp. 31-41. http://geodesic.mathdoc.fr/item/VVGUM_2014_2_a4/
[1] V.\;A. Gurvich, A.\;V. Karzanov, L.\;G. Khachiyan, “Cyclic games and find the minimax of secondary cycles in oriented graphs”, Journal of Computational Mathematics and Mathematical Physics, 28:9 (1988), 1407–1417
[2] A.\;V. Karzanov, “About average weight minimum sections and cycles of oriented graph”, Qualitative research methods and approximate operator equations, 1985, 72–83
[3] E.\;M. Klark, O. Gramberg jr., D. Peled, Program models verification, Izd-vo Mosk. tsentra nepreryv. mat. obrazovaniya Publ., M., 2002, 416 pp.
[4] P. Bouyer, U. Fahrenberg, K.\;G. Larsen, N. Markey, J. Srba, “Infinite runs in weighted timed automata with energy constraints”, Formal Modeling and Analysis of Timed Systems, FORMATS 2008 (Saint Malo, France, September 15–17, 2008), LNCS, 5215, 2008, 33–47
[5] Y.\;M. Lifshits, D.\;S. Pavlov, “Potential theory for mean payoff games”, Notes of scientific seminars LBMI, 340, 2006, 61–75