Mots-clés : satellite
@article{VUU_2024_34_4_a7,
author = {O. V. Kholostova},
title = {On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {594--612},
year = {2024},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a7/}
}
TY - JOUR AU - O. V. Kholostova TI - On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 594 EP - 612 VL - 34 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a7/ LA - ru ID - VUU_2024_34_4_a7 ER -
%0 Journal Article %A O. V. Kholostova %T On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 594-612 %V 34 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a7/ %G ru %F VUU_2024_34_4_a7
O. V. Kholostova. On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 594-612. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a7/
[1] Kholostova O.V., “On periodic motions of a nonautonomous Hamiltonian system in one case of multiple parametric resonance”, Russian Journal of Nonlinear Dynamics, 13:4 (2017), 477–504 (in Russian) | DOI | MR | Zbl
[2] Beletskii V.V., Satellite’s motion about center of mass in a gravitational field, Moscow State University, Moscow, 1975
[3] Sarychev V.A., “Asymptotically stable stationary rotations of the satellite”, Kosmicheskie Issledovaniya, 3:5 (1965), 667–673 (in Russian)
[4] Markeev A.P., “Stability of stationary rotation of a satellite in an elliptical orbit”, Kosmicheskie Issledovaniya, 3:5 (1965), 674–676 (in Russian)
[5] Markeev A.P., “Stability of a canonical system with two degrees of freedom in the presence of resonance”, Journal of Applied Mathematics and Mechanics, 32:4 (1968), 766–772 | DOI | MR | Zbl
[6] Markeev A.P., Chekhovskaia T.N., “On the stability of a satellite cylindrical precession in an elliptic orbit”, Journal of Applied Mathematics and Mechanics, 40:6 (1976), 984–991 | DOI | MR | MR | Zbl
[7] Sokol’skii A.G., “The problem of the stability of regular precessions of a symmetrical Satellite”, Kosmicheskie Issledovaniya, 18:5 (1980), 698–706 (in Russian) | MR
[8] Markeyev A.P., “The problem of the stability of the equilibrium position of a Hamiltonian system at 3:1 resonance”, Journal of Applied Mathematics and Mechanics, 65:4 (2001), 639–645 | DOI | MR | Zbl
[9] Churkina T.E., “On the stability of satellite’s motion in the elliptical orbit in case of the cylindrical precession”, Matematicheskoe Modelirovanie, 16:7 (2004), 3–5 (in Russian) | Zbl
[10] Bardin B.S., Maciejewski A.J., “Transcendental case in stability problem of Hamiltonian system with two degrees of freedom in presence of first order resonance”, Qualitative Theory of Dynamical Systems, 12:1 (2013), 207–216 | DOI | MR | Zbl
[11] Markeev A.P., “On the stability of a steady rotation of a satellite around the normal to the orbital plane”, Mechanics of Solids, 55:7 (2020), 947–957 | DOI | DOI | Zbl
[12] Markeev A.P., “On rotational motion of a dynamically symmetrical satellite in an elliptic orbit”, Kosmicheskie Issledovaniya, 5:4 (1967), 530–539 (in Russian)
[13] Markeyev A.P., “The critical case of a pair of zero roots in a two-degree-of-freedom hamiltonian system”, Journal of Applied Mathematics and Mechanics, 62:3 (1998), 341–349 | DOI | MR
[14] Bardin B.S., “On nonlinear motions of Hamiltonian system in case of fourth order resonance”, Regular and Chaotic Dynamics, 12:1 (2007), 86–100 | DOI | MR | Zbl
[15] Vera J.A., “On the periodic solutions emerging from the cylindrical precession of an axisymmetric satellite in a circular orbit”, Mechanics Research Communications, 51 (2013), 23–28 | DOI
[16] Markeyev A.P., “Multiple parametric resonance in Hamiltonian systems”, Journal of Applied Mathematics and Mechanics, 70:2 (2006), 176–194 | DOI | MR | Zbl
[17] Kholostova O.V., “On nonlinear oscillations of a time-periodic Hamiltonian system at a 2:1:1 resonance”, Russian Journal of Nonlinear Dynamics, 18:4 (2022), 481–512 | DOI | MR | Zbl
[18] Kholostova O.V., “On nonlinear oscillations of a near-autonomous Hamiltonian system in one case of integer nonequal frequencies”, Russian Journal of Nonlinear Dynamics, 19:4 (2023), 447–471 | DOI | MR | Zbl
[19] Markeev A.P., Libration points in celestial mechanics and cosmodynamics, Nauka, Moscow, 1978 | DOI | Zbl
[20] Glimm J., “Formal stability of Hamiltonian systems”, Communications on Pure and Applied Mathematics, 17:4 (1964), 509–526 | DOI | MR | Zbl
[21] Moser J., “Convergent series expansions for quasi-periodic motions”, Mathematische Annalen, 169:1 (1967), 136–176 | DOI | MR | Zbl
[22] Mel’nikov V.K., “On some cases of conservation of conditionally periodic motions under a small change of the Hamiltonian function”, Soviet Mathematics. Doklady, 6 (1965), 1592–1596 | Zbl
[23] Byrd P.F., Friedman M.D., Handbook of elliptic integrals for engineers and scientists, Springer, Heidelberg–Berlin, 1971 | DOI | MR | Zbl
[24] Arnol’d V.I., Kozlov V.V., Neishtadt A.I., Mathematical aspects of classical and celestial mechanics, Springer, Berlin–Heidelberg, 2006 | DOI | MR