On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 594-612
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper studies the motions of a dynamically symmetric satellite (rigid body) relative to the center of mass in the central Newtonian gravitational field on a weakly elliptical orbit in the neighborhood of its stationary rotation (cylindrical precession). We consider the values of the parameters for which, in the limiting case of a circular orbit, one of the frequencies of small linear oscillations is equal to unity and the other is equal to zero, and the rank of the coefficient matrix of the linearized equations of the perturbed motion is equal to two, as well as a small neighborhood of this resonant point in the three-dimensional space of parameters. The resonant periodic motions of the satellite, analytical in fractional powers of a small parameter (the eccentricity of the orbit of the satellite's center of mass), are constructed. A rigorous nonlinear analysis of their stability is carried out. The methods of KAM theory are used to describe two- and three-frequency conditionally periodic motions of a satellite, with frequencies of different orders in a small parameter. A number of general theoretical issues concerning the considered multiple parametric resonance in Hamiltonian systems with two degrees of freedom that are close to autonomous and periodic in time are discussed. Several qualitatively different variants of parametric resonance regions are constructed. It is shown that in the general case the nature of nonlinear resonant oscillations of the system is determined by the first approximation system in a small parameter.
Keywords:
multiple parametric resonance,
normalization,
nonlinear oscillations,
stability,
periodic motions,
KAM theory,
satellite,
cylindrical precession
@article{VUU_2024_34_4_a7,
author = {O. V. Kholostova},
title = {On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {594--612},
publisher = {mathdoc},
volume = {34},
number = {4},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a7/}
}
TY - JOUR AU - O. V. Kholostova TI - On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 594 EP - 612 VL - 34 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a7/ LA - ru ID - VUU_2024_34_4_a7 ER -
%0 Journal Article %A O. V. Kholostova %T On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 594-612 %V 34 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a7/ %G ru %F VUU_2024_34_4_a7
O. V. Kholostova. On the motion of a dynamically symmetric satellite in one case of multiple parametric resonance. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 594-612. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a7/