Quasi statistically rough convergence of sequences in gradual normed linear spaces
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 563-576 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present article, we set forth with the new notion of quasi statistically rough convergence in the gradual normed linear spaces. We establish significant results that present several fundamental properties of this new notion. We also introduce the notion of $st_{q}^{r}(\mathcal{G})$-limit set and prove that it is gradually closed, convex, and plays an important role for the quasi statistically boundedness of a sequence in a gradual normed linear space.
Keywords: gradual number, gradual normed linear space, quasi density, $st_{q}^{r}(\mathcal{G})$-convergence, $st_{q}^{r}(\mathcal{G})$-limit set
@article{VUU_2024_34_4_a5,
     author = {Ch. Choudhury},
     title = {Quasi statistically rough convergence of sequences in gradual normed linear spaces},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {563--576},
     year = {2024},
     volume = {34},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a5/}
}
TY  - JOUR
AU  - Ch. Choudhury
TI  - Quasi statistically rough convergence of sequences in gradual normed linear spaces
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 563
EP  - 576
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a5/
LA  - en
ID  - VUU_2024_34_4_a5
ER  - 
%0 Journal Article
%A Ch. Choudhury
%T Quasi statistically rough convergence of sequences in gradual normed linear spaces
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 563-576
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a5/
%G en
%F VUU_2024_34_4_a5
Ch. Choudhury. Quasi statistically rough convergence of sequences in gradual normed linear spaces. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 563-576. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a5/

[1] Aiche F., Dubois D., “Possibility and gradual number approaches to ranking methods for random fuzzy intervals”, Advances in Computational Intelligence, Springer, 2012, 9–18 | DOI | Zbl

[2] Akçay F.G., Aytar S., “Rough convergence of a sequence of fuzzy numbers”, Bulletin of Mathematical Analysis and Applications, 7:4 (2015), 17–23 https://www.emis.de/journals/BMAA/vol_7_issue_4.html | MR | Zbl

[3] Altinok H., Altin Y., Isik M., “Statistical convergence and strong $p$-Cesàro summability of order $\beta$ in sequences of fuzzy numbers”, Iranian Journal of Fuzzy Systems, 9:2 (2012), 63–73 | DOI | MR | Zbl

[4] Altınok M., Küçükaslan M., “$A$-statistical convergence and $a$-statistical monotonicity”, Applied Mathematics E-Notes, 13 (2013), 249–260 https://www.emis.de/journals/AMEN/ | MR | Zbl

[5] Altınok M., Küçükaslan M., “$A$-statistical supremum-infimum and $a$-statistical convergence”, Azerbaijan Journal of Mathematics, 4:2 (2014), 31–42 https://www.azjm.org/volumes/4-2.html | MR | Zbl

[6] Altınok M., Küçükaslan M., Kaya U., “Statistical extension of bounded sequence space”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 70:1 (2021), 82–99 | DOI | MR | Zbl

[7] Antal R., Chawla M., Kumar V., “Some remarks on rough statistical $\Lambda$-convergence of order $\alpha$”, Ural Mathematical Journal, 7:1 (2021), 16–25 | DOI | MR | Zbl

[8] Arslan M., Dündar E., “On rough convergence in 2-normed spaces and some properties”, Filomat, 33:16 (2019), 5077–5086 | DOI | MR | Zbl

[9] Aytar S., “The rough limit set and the core of a real sequence”, Numerical Functional Analysis and Optimization, 29:3–4 (2008), 283–290 | DOI | MR | Zbl

[10] Aytar S., “Rough statistical convergence”, Numerical Functional Analysis and Optimization, 29:3–4 (2008), 291–303 | DOI | MR | Zbl

[11] Aytar S., “Rough statistical cluster points”, Filomat, 31:16 (2017), 5295–5304 | DOI | MR | Zbl

[12] Choudhury C., Debnath S., “On $\mathcal{I}$-convergence of sequences in gradual normed linear spaces”, Facta Universitatis. Series: Mathematics and Informatics, 36:3 (2021), 595–604 | DOI | MR | Zbl

[13] Choudhury C., Debnath S., “On lacunary statistical convergence of sequences in gradual normed spaces”, Annals of the University of Craiova, Mathematics and Computer Science Series, 49:2 (2022), 110–119 | DOI | MR | Zbl

[14] Choudhury C., Debnath S., “On quasi statistical convergence in gradual normed linear spaces”, TWMS Journal of Applied and Engineering Mathematics, 13:4 (2023), 1327–1336 https://jaem.isikun.edu.tr/web/index.php/archive/1148-jaem-vol-13-no-4-2023 | MR

[15] Connor J.S., “The statistical and strong $p$-Cesàro convergence of sequences”, Analysis, 8:1–2 (1988), 47–63 | DOI | MR | Zbl

[16] Demir N., Gumus H., “Rough statistical convergence for difference sequences”, Kragujevac Journal of Mathematics, 46:5 (2022), 733–742 | DOI | MR | Zbl

[17] Dubois D., Prade H., “Gradual elements in a fuzzy set”, Soft Computing, 12:2 (2007), 165–175 | DOI

[18] Dündar E., Çakan C., “Rough I-convergence”, Demonstratio Mathematica, 47:3 (2014), 638–651 | DOI | MR | Zbl

[19] Ettefagh M., Azari F.Y., Etemad S., “On some topological properties in gradual normed spaces”, Facta Universitatis. Series: Mathematics and Informatics, 35:3 (2020), 549–559 | DOI | MR | Zbl

[20] Ettefagh M., Etemad S., Azari F.Y., “Some properties of sequences in gradual normed spaces”, Asian-European Journal of Mathematics, 13:4 (2020), 2050085 | DOI | MR | Zbl

[21] Fast H., “Sur la convergence statistique”, Colloquium Mathematicae, 2:3–4 (1951), 241–244 http://eudml.org/doc/209960 | DOI | MR | Zbl

[22] Fortin J., Dubois D., Fargier H., “Gradual numbers and their application to fuzzy interval analysis”, IEEE Transactions on Fuzzy Systems, 16:2 (2008), 388–402 | DOI

[23] Fridy J.A., “On statistical convergence”, Analysis, 5:4 (1985), 301–313 | DOI | MR | Zbl

[24] Fridy J.A., “Statistical limit points”, Proceedings of the American Mathematical Society, 118:4 (1993), 1187–1192 | DOI | MR | Zbl

[25] Ganguly D.K., Dafadar A., “On quasi statistical convergence of double sequences”, General Mathematics Notes, 32:2 (2016), 42–53 https://www.emis.de/journals/GMN/volumes/all_volumes-page1_2016.html

[26] Karakaş A., Altın Y., Altınok H., “On generalized statistical convergence of order $\beta$ of sequences of fuzzy numbers”, Journal of Intelligent Fuzzy Systems, 26:4 (2014), 1909–1917 | DOI | MR | Zbl

[27] Lietard L., Rocacher D., “Conditions with aggregates evaluated using gradual numbers”, Control and Cybernetics, 38:2 (2009), 395–417 | MR | Zbl

[28] Pal S.K., Debraj Chandra, Dutta S., “Rough ideal convergence”, Hacettepe Journal of Mathematics and Statistics, 42:6 (2013), 633–640 https://dergipark.org.tr/en/pub/hujms/issue/7745/101241 | MR | Zbl

[29] Özgüç I., “Results on quasi-statistical limit and quasi-statistical cluster points”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69:1 (2020), 646–653 | DOI | MR | Zbl

[30] Sakaoǧlu I., Yurdakadim T., “On quasi-statistical convergence”, Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 61:1 (2012), 11–17 | DOI | MR | Zbl

[31] Phu H.X., “Rough convergence in normed linear spaces”, Numerical Functional Analysis and Optimization, 22:1–2 (2001), 199–222 | DOI | MR | Zbl

[32] Phu H.X., “Rough convergence in infinite dimensional normed spaces”, Numerical Functional Analysis and Optimization, 24:3–4 (2003), 285–301 | DOI | MR | Zbl

[33] Sadeqi I., Azari F.Y., “Gradual normed linear space”, Iranian Journal of Fuzzy Systems, 8:5 (2011), 131–139 | DOI | MR | Zbl

[34] Šalát T., “On statistically convergent sequences of real numbers”, Mathematica Slovaca, 30:2 (1980), 139–150 https://eudml.org/doc/34081 | MR | Zbl

[35] Steinhaus H., “Sur la convergence ordinaire et la convergence asymptotique”, Colloquium Mathematicum, 2:1 (1951), 73–74 | MR

[36] Stock E.A., Gradual numbers and fuzzy optimization, Ph. D. Thesis, University of Colorado Denver, Denver, 2010 | MR | Zbl

[37] Tripathy B.C., “On statistically convergent and statistically bounded sequences”, Bulletin of the Malaysian Mathematical Society. Second Series, 20:1 (1997), 31–33 | MR | Zbl

[38] Tripathy B.C., “On statistically convergent sequences”, Bulletin of the Calcutta Mathematical Society, 90:4 (1998), 259–262 | MR | Zbl

[39] Turan N., Kara E.E., Ilkhan M., “Quasi statistical convergence in cone metric spaces”, Facta Universitatis. Series: Mathematics and Informatics, 33:4 (2018), 613–626 https://casopisi.junis.ni.ac.rs/index.php/FUMathInf/article/view/3665 | MR | Zbl

[40] Zadeh L.A., “Fuzzy sets”, Information and Control, 8:3 (1965), 338–353 | DOI | MR | Zbl