Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 541-562 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $U$ be the set of admissible controls, $T>0$, and let $W[0;\tau]$, $\tau\in(0;T]$, be a scale of Banach spaces such that the set of restrictions of functions from $W=W[0;T]$ to $[0;\tau]$ coincides with $W[0;\tau]$; let $F[.;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. Earlier, for the operator equation $x=F[x;u]$, $x\in W$, the author introduced a comparison system in the form of a functional integral equation in the space $\mathbf{C}[0;T]$. It was established that to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation, it is sufficient to preserve the global solvability of the specified comparison system, and the corresponding sufficient conditions were established. In this paper, further examples of application of this theory are considered: nonlinear wave equation, strongly nonlinear wave equation, nonlinear heat equation, strongly nonlinear parabolic equation.
Keywords: second kind evolutionary Volterra equation of general form, functional integral equation, comparison system, preservation of global solvability, uniqueness of solution, nonlinear wave equation, nonlinear parabolic equation
@article{VUU_2024_34_4_a4,
     author = {A. V. Chernov},
     title = {Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {541--562},
     year = {2024},
     volume = {34},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a4/}
}
TY  - JOUR
AU  - A. V. Chernov
TI  - Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 541
EP  - 562
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a4/
LA  - ru
ID  - VUU_2024_34_4_a4
ER  - 
%0 Journal Article
%A A. V. Chernov
%T Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 541-562
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a4/
%G ru
%F VUU_2024_34_4_a4
A. V. Chernov. Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 541-562. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a4/

[1] Chernov A.V., “Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 34:1 (2024), 109–136 (in Russian) | DOI | MR | Zbl

[2] Chernov A.V., “On preservation of global solvability of controlled second kind operator equation”, Ufa Mathematical Journal, 12:1 (2020), 56–82 | DOI | MR | Zbl

[3] Sumin V.I., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, IFAC PapersOnLine, 51:32 (2018), 759–764 | DOI

[4] Chernov A.V., “Preservation of the solvability of a semilinear global electric circuit equation”, Computational Mathematics and Mathematical Physics, 58:12 (2018), 2018–2030 | DOI | MR | Zbl

[5] Sumin V.I., “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:1 (2019), 262–278 (in Russian) | DOI | MR

[6] Chernov A.V., “On totally global solvability of evolutionary Volterra equation of the second kind”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:4 (2022), 593–614 (in Russian) | DOI | MR | Zbl

[7] Agarwal R.P., O’Regan D., Wong P.J.Y., Constant-sign solutions of systems of integral equations, Springer, Cham, 2013 | DOI | MR | Zbl

[8] Yang Zh., “Positive solutions for a system of nonlinear Hammerstein integral equations and applications”, Applied Mathematics and Computation, 218:22 (2012), 11138–11150 | DOI | MR | Zbl

[9] Bugajewska D., Bugajewski D., Hudzik H., “$BV_{\phi}$-solutions of nonlinear integral equations”, Journal of Mathematical Analysis and Applications, 287:1 (2003), 265–278 | DOI | MR | Zbl

[10] Hernandez-Veron M.A., Yadav N., Martinez E., Singh S., “Kurchatov-type methods for non-differentiable Hammerstein-type integral equations”, Numerical Algorithms, 93:1 (2023), 131–155 | DOI | MR | Zbl

[11] Moroz V., Zabreiko P., “On Hammerstein equations with natural growth conditions”, Zeitschrift für Analysis und ihre Anwendungen, 18:3 (1999), 625–638 | DOI | MR | Zbl

[12] Cabada A., Infante G., Fernandez Tojo F.A., “Nontrivial solutions of Hammerstein integral equations with reflections”, Boundary Value Problems, 2013, 86 | DOI | MR | Zbl

[13] Lopez-Somoza L., Minhós F., “Existence and multiplicity results for some generalized Hammerstein equations with a parameter”, Advances in Difference Equations, 2019, 423 | DOI | MR | Zbl

[14] Graef J., Kong L., Minhós F., “Generalized Hammerstein equations and applications”, Results in Mathematics, 72:1–2 (2017), 369–383 | DOI | MR | Zbl

[15] Aziz W., Leiva H., Merentes N., “Solutions of Hammerstein equations in the space $BV(I^b_a)$”, Quaestiones Mathematicae, 37:3 (2014), 359–370 | DOI | MR | Zbl

[16] Bugajewski D., “On BV-solutions of some nonlinear integral equations”, Integral Equations and Operator Theory, 46:4 (2003), 387–398 | DOI | MR | Zbl

[17] Bugajewska D., O’Regan D., “On nonlinear integral equations and $\Lambda$-bounded variation”, Acta Mathematica Hungarica, 107:4 (2005), 295–306 | DOI | MR | Zbl

[18] Pachpatte B.G., “On a generalized Hammerstein-type integral equation”, Journal of Mathematical Analysis and Applications, 106 (1985), 85–90 | DOI | MR | Zbl

[19] Polyanin A.D., Manzhirov A.V., Handbook of integral equations, CRC Press, Boca Raton, FL, 2008 | DOI | MR | Zbl

[20] Lions J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | Zbl

[21] Gajewski H., Gröger K., Zacharias K., Nonlinear operator equations and operator differential equations, Akademie, Berlin, 1974 | Zbl

[22] Sobolev S.L., “Some applications of functional analysis in mathematical physics”, Translations of Mathematical Monographs, v. 90, American Mathematical Society (AMS), Providence, RI, 1991 | MR | MR | Zbl

[23] Chernov A.V., “On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games”, Automation and Remote Control, 83:11 (2022), 1843–1856 | DOI | DOI | MR

[24] Hartman P., Ordinary differential equations, John Wiley and Sons, Inc., New York–London–Sydney, 1964 | MR | Zbl