@article{VUU_2024_34_4_a4,
author = {A. V. Chernov},
title = {Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {541--562},
year = {2024},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a4/}
}
TY - JOUR AU - A. V. Chernov TI - Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 541 EP - 562 VL - 34 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a4/ LA - ru ID - VUU_2024_34_4_a4 ER -
%0 Journal Article %A A. V. Chernov %T Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 541-562 %V 34 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a4/ %G ru %F VUU_2024_34_4_a4
A. V. Chernov. Preservation of global solvability and estimation of solutions of some controlled nonlinear partial differential equations of the second order. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 541-562. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a4/
[1] Chernov A.V., “Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 34:1 (2024), 109–136 (in Russian) | DOI | MR | Zbl
[2] Chernov A.V., “On preservation of global solvability of controlled second kind operator equation”, Ufa Mathematical Journal, 12:1 (2020), 56–82 | DOI | MR | Zbl
[3] Sumin V.I., “Volterra functional-operator equations in the theory of optimal control of distributed systems”, IFAC PapersOnLine, 51:32 (2018), 759–764 | DOI
[4] Chernov A.V., “Preservation of the solvability of a semilinear global electric circuit equation”, Computational Mathematics and Mathematical Physics, 58:12 (2018), 2018–2030 | DOI | MR | Zbl
[5] Sumin V.I., “Controlled Volterra functional equations and the contraction mapping principle”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:1 (2019), 262–278 (in Russian) | DOI | MR
[6] Chernov A.V., “On totally global solvability of evolutionary Volterra equation of the second kind”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:4 (2022), 593–614 (in Russian) | DOI | MR | Zbl
[7] Agarwal R.P., O’Regan D., Wong P.J.Y., Constant-sign solutions of systems of integral equations, Springer, Cham, 2013 | DOI | MR | Zbl
[8] Yang Zh., “Positive solutions for a system of nonlinear Hammerstein integral equations and applications”, Applied Mathematics and Computation, 218:22 (2012), 11138–11150 | DOI | MR | Zbl
[9] Bugajewska D., Bugajewski D., Hudzik H., “$BV_{\phi}$-solutions of nonlinear integral equations”, Journal of Mathematical Analysis and Applications, 287:1 (2003), 265–278 | DOI | MR | Zbl
[10] Hernandez-Veron M.A., Yadav N., Martinez E., Singh S., “Kurchatov-type methods for non-differentiable Hammerstein-type integral equations”, Numerical Algorithms, 93:1 (2023), 131–155 | DOI | MR | Zbl
[11] Moroz V., Zabreiko P., “On Hammerstein equations with natural growth conditions”, Zeitschrift für Analysis und ihre Anwendungen, 18:3 (1999), 625–638 | DOI | MR | Zbl
[12] Cabada A., Infante G., Fernandez Tojo F.A., “Nontrivial solutions of Hammerstein integral equations with reflections”, Boundary Value Problems, 2013, 86 | DOI | MR | Zbl
[13] Lopez-Somoza L., Minhós F., “Existence and multiplicity results for some generalized Hammerstein equations with a parameter”, Advances in Difference Equations, 2019, 423 | DOI | MR | Zbl
[14] Graef J., Kong L., Minhós F., “Generalized Hammerstein equations and applications”, Results in Mathematics, 72:1–2 (2017), 369–383 | DOI | MR | Zbl
[15] Aziz W., Leiva H., Merentes N., “Solutions of Hammerstein equations in the space $BV(I^b_a)$”, Quaestiones Mathematicae, 37:3 (2014), 359–370 | DOI | MR | Zbl
[16] Bugajewski D., “On BV-solutions of some nonlinear integral equations”, Integral Equations and Operator Theory, 46:4 (2003), 387–398 | DOI | MR | Zbl
[17] Bugajewska D., O’Regan D., “On nonlinear integral equations and $\Lambda$-bounded variation”, Acta Mathematica Hungarica, 107:4 (2005), 295–306 | DOI | MR | Zbl
[18] Pachpatte B.G., “On a generalized Hammerstein-type integral equation”, Journal of Mathematical Analysis and Applications, 106 (1985), 85–90 | DOI | MR | Zbl
[19] Polyanin A.D., Manzhirov A.V., Handbook of integral equations, CRC Press, Boca Raton, FL, 2008 | DOI | MR | Zbl
[20] Lions J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Gauthier-Villars, Paris, 1969 | MR | Zbl
[21] Gajewski H., Gröger K., Zacharias K., Nonlinear operator equations and operator differential equations, Akademie, Berlin, 1974 | Zbl
[22] Sobolev S.L., “Some applications of functional analysis in mathematical physics”, Translations of Mathematical Monographs, v. 90, American Mathematical Society (AMS), Providence, RI, 1991 | MR | MR | Zbl
[23] Chernov A.V., “On Stackelberg equilibrium in the sense of program strategies in Volterra functional operator games”, Automation and Remote Control, 83:11 (2022), 1843–1856 | DOI | DOI | MR
[24] Hartman P., Ordinary differential equations, John Wiley and Sons, Inc., New York–London–Sydney, 1964 | MR | Zbl