Mots-clés : configuration
@article{VUU_2024_34_4_a2,
author = {M. T. Makhammadaliev},
title = {Pure phases of the ferromagnetic {Potts} model with $q$ states on the {Cayley} tree of order three},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {499--517},
year = {2024},
volume = {34},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a2/}
}
TY - JOUR AU - M. T. Makhammadaliev TI - Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 499 EP - 517 VL - 34 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a2/ LA - en ID - VUU_2024_34_4_a2 ER -
%0 Journal Article %A M. T. Makhammadaliev %T Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 499-517 %V 34 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a2/ %G en %F VUU_2024_34_4_a2
M. T. Makhammadaliev. Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 499-517. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a2/
[1] Friedli S., Velenik Y., Statistical mechanics of lattice systems. A concrete mathematical introduction, Cambridge University Press, Cambridge, 2017 | DOI | MR
[2] Georgii H.-O., Gibbs measures and phase transitions, de Gruyter, Berlin, 2011 | DOI | MR | Zbl
[3] Rozikov U.A., Gibbs measures on Cayley trees, World Scientific, Singapore, 2013 | DOI | MR | Zbl
[4] Sinai Ya.G., Theory of phase transitions: rigorous results, Pergamon, Oxford, 1982 | MR | Zbl
[5] Preston C., Gibbs states on countable sets, Cambridge University Press, Cambridge, 1974 | DOI | MR | Zbl
[6] Mukhamedov F., “On a factor associated with the unordered phase of $\lambda$-model on a Cayley tree”, Reports on Mathematical Physics, 53:1 (2004), 1–18 | DOI | MR | Zbl
[7] Mukhamedov F., Pah C.H., Jamil H., “Ground states and phase transition of the $\lambda$-model on the Cayley tree”, Theoretical and Mathematical Physics, 194:2 (2018), 260–273 | DOI | DOI | MR | Zbl
[8] Mukhamedov F., Pah C. H., Jamil H., Rahmatullaev M., “On ground states and phase transition for $\lambda$-model with the competing Potts interactions on Cayley trees”, Physica A: Statistical Mechanics and its Applications, 549 (2020), 124184 | DOI | MR | Zbl
[9] Rahmatullaev M.M., Karshiboev O.Sh., “The boundary condition problems for the three-state SOS model on the binary tree”, Lobachevskii Journal of Mathematics, 44:7 (2023), 2891–2897 | DOI | MR | Zbl
[10] Rozikov U.A., “Gibbs measures of Potts model on Cayley trees: A survey and applications”, Reviews in Mathematical Physics, 33:10 (2021), 2130007 | DOI | MR | Zbl
[11] Rozikov U.A., Gibbs measures in biology and physics. The Potts Model, World Scientific, 2023 | DOI | Zbl
[12] Peruggi F., di Liberto F., Monroy G., “The Potts model on Bethe lattices”, Zeitschrift für Physik B Condensed Matter, 66:3 (1987), 379–385 | DOI | MR
[13] Peruggi F., di Liberto F., Monroy G., “Phase diagrams of the q-state Potts model on Bethe lattices”, Physica A: Statistical Mechanics and its Applications, 141:1 (1987), 151–186 | DOI | MR
[14] Ganikhodzhaev N.N., “Pure phases of the ferromagnetic Potts model with three states on a second-order Bethe lattice”, Theoretical and Mathematical Physics, 85:2 (1990), 1125–1134 | DOI | MR
[15] Ganikhodzhaev N., Mukhamedov F., Mendes J.F.F., “On the three state Potts model with competing interactions on the Bethe lattice”, Journal of Statistical Mechanics: Theory and Experiment, 2006:08 (2006), P08012 | DOI
[16] Ganikhodzhaev N., Mukhamedov F., Pah C.H., “Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice”, Physics Letters A, 373:1 (2008), 33–38 | DOI | MR | Zbl
[17] Külske C., Rozikov U.A., Khakimov R.M., “Description of the translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, Journal of Statistical Physics, 156:1 (2014), 189–200 | DOI | MR | Zbl
[18] Külske C., Rozikov U.A., “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures and Algorithms, 50:4 (2017), 636–678 | DOI | MR | Zbl
[19] Khakimov R.M., Khaydarov F.Kh., “Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree”, Theoretical and Mathematical Physics, 189:2 (2016), 1651–1659 | DOI | DOI | MR | Zbl
[20] Makhammadaliev M.T., “Extremality of the translation-invariant Gibbs measures for the Potts model with four states on the Cayley tree of order $k=3$”, Uzbek Mathematical Journal, 66:1 (2022), 117–132 | DOI | MR | Zbl
[21] Rozikov U.A., Khakimov R.M., Khaidarov F.Kh., “Extremality of the translation-invariant Gibbs measures for the Potts model on the Cayley tree”, Theoretical and Mathematical Physics, 196:1 (2018), 1043–1058 | DOI | DOI | MR | Zbl
[22] Ganikhodzhaev N.N., Rozikov U.A., “Description of periodic extreme Gibbs measures of some lattice models on a Cayley tree”, Theoretical and Mathematical Physics, 111:1 (1997), 480–486 | DOI | DOI | MR | Zbl
[23] Ganikhodjaev N.N., Rozikov U.A., “The Potts model with countable set of spin values on a Cayley tree”, Letters in Mathematical Physics, 75:2 (2006), 99–109 | DOI | MR | Zbl
[24] Rakhmatullaev M.M., “Weakly periodic Gibbs measures and ground states for the Potts model with competing interactions on the Cayley tree”, Theoretical and Mathematical Physics, 176:3 (2013), 1236–1251 | DOI | DOI | MR | Zbl
[25] Khakimov R.M., “The existence periodic Gibbs measures for the Potts model on the Cayley tree”, Uzbek Mathematical Journal, 2014, no. 3, 134–142 (in Russian) https://www.researchgate.net/publication/268333062
[26] Khakimov R.M., “New periodic Gibbs measures for q-state Potts model on a Cayley tree”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 297–304 | MR | Zbl
[27] Khakimov R.M., Makhammadaliev M.T., “Translation invariance of the periodic Gibbs measures for the Potts model on the Cayley tree”, Theoretical and Mathematical Physics, 199:2 (2019), 726–735 | DOI | DOI | MR | Zbl
[28] Rakhmatullaev M.M., “On weakly periodic Gibbs measures for the Potts model with external field on the Cayley tree”, Ukrainian Mathematical Journal, 68:4 (2016), 598–611 | DOI | MR | Zbl | Zbl
[29] Rozikov U.A., Khakimov R.M., “Periodic Gibbs measures for Potts model on the Cayley tree”, Theoretical and Mathematical Physics, 175:2 (2013), 699–709 | DOI | DOI | MR | MR | Zbl
[30] Rozikov U.A., Rakhmatullaev M.M., Khakimov R.M., “Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree”, Theoretical and Mathematical Physics, 210:1 (2022), 135–153 | DOI | DOI | MR | Zbl
[31] Kesten H., Stigum B.P., “Additional limit theorems for indecomposable multidimensional Galton–Watson processes”, The Annals of Mathematical Statistics, 37:6 (1966), 1463–1481 | DOI | MR | Zbl
[32] Külske C., Formentin M., “A symmetric entropy bound on the non-reconstruction regime of Markov chains on Galton–Watson trees”, Electronic Communications in Probability, 14 (2009), 587–596 | DOI | MR | Zbl
[33] Mossel E., “Survey: Information flow on trees”, 2004, arXiv: math/0406446 [math.PR] | DOI | MR
[34] Martinelli F., Sinclair A., Weitz D., “Fast mixing for independent sets, coloring and other models on trees”, Random Structures and Algorithms, 31:2 (2007), 134–172 | DOI | MR | Zbl