Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 499-517 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the main issues in statistical mechanics is the phase transition phenomenon. It happens when there are at least two distinct Gibbs measures in the model. It is known that the ferromagnetic Potts model with $q$ states possesses, at sufficiently low temperatures, at most $2^{q}-1$ translation-invariant splitting Gibbs measures. For continuous Hamiltonians, in the space of probability measures, the Gibbs measures form a non-empty, convex, compact set. Extremal measures, which corresponds to the extreme points of this set, determines pure phases. We study the extremality of the translation-invariant splitting Gibbs measures for the ferromagnetic $q$-state Potts model on the Cayley tree of order three. We define the regions where the translation-invariant Gibbs measures for this model are extreme or not. We reduce description of Gibbs measures to solving a non-linear functional equation, each solution of which corresponds to one Gibbs measure.
Keywords: Cayley tree, Potts model, Gibbs measure, translation-invariant measure
Mots-clés : configuration
@article{VUU_2024_34_4_a2,
     author = {M. T. Makhammadaliev},
     title = {Pure phases of the ferromagnetic {Potts} model with $q$ states on the {Cayley} tree of order three},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {499--517},
     year = {2024},
     volume = {34},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a2/}
}
TY  - JOUR
AU  - M. T. Makhammadaliev
TI  - Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 499
EP  - 517
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a2/
LA  - en
ID  - VUU_2024_34_4_a2
ER  - 
%0 Journal Article
%A M. T. Makhammadaliev
%T Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 499-517
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a2/
%G en
%F VUU_2024_34_4_a2
M. T. Makhammadaliev. Pure phases of the ferromagnetic Potts model with $q$ states on the Cayley tree of order three. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 499-517. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a2/

[1] Friedli S., Velenik Y., Statistical mechanics of lattice systems. A concrete mathematical introduction, Cambridge University Press, Cambridge, 2017 | DOI | MR

[2] Georgii H.-O., Gibbs measures and phase transitions, de Gruyter, Berlin, 2011 | DOI | MR | Zbl

[3] Rozikov U.A., Gibbs measures on Cayley trees, World Scientific, Singapore, 2013 | DOI | MR | Zbl

[4] Sinai Ya.G., Theory of phase transitions: rigorous results, Pergamon, Oxford, 1982 | MR | Zbl

[5] Preston C., Gibbs states on countable sets, Cambridge University Press, Cambridge, 1974 | DOI | MR | Zbl

[6] Mukhamedov F., “On a factor associated with the unordered phase of $\lambda$-model on a Cayley tree”, Reports on Mathematical Physics, 53:1 (2004), 1–18 | DOI | MR | Zbl

[7] Mukhamedov F., Pah C.H., Jamil H., “Ground states and phase transition of the $\lambda$-model on the Cayley tree”, Theoretical and Mathematical Physics, 194:2 (2018), 260–273 | DOI | DOI | MR | Zbl

[8] Mukhamedov F., Pah C. H., Jamil H., Rahmatullaev M., “On ground states and phase transition for $\lambda$-model with the competing Potts interactions on Cayley trees”, Physica A: Statistical Mechanics and its Applications, 549 (2020), 124184 | DOI | MR | Zbl

[9] Rahmatullaev M.M., Karshiboev O.Sh., “The boundary condition problems for the three-state SOS model on the binary tree”, Lobachevskii Journal of Mathematics, 44:7 (2023), 2891–2897 | DOI | MR | Zbl

[10] Rozikov U.A., “Gibbs measures of Potts model on Cayley trees: A survey and applications”, Reviews in Mathematical Physics, 33:10 (2021), 2130007 | DOI | MR | Zbl

[11] Rozikov U.A., Gibbs measures in biology and physics. The Potts Model, World Scientific, 2023 | DOI | Zbl

[12] Peruggi F., di Liberto F., Monroy G., “The Potts model on Bethe lattices”, Zeitschrift für Physik B Condensed Matter, 66:3 (1987), 379–385 | DOI | MR

[13] Peruggi F., di Liberto F., Monroy G., “Phase diagrams of the q-state Potts model on Bethe lattices”, Physica A: Statistical Mechanics and its Applications, 141:1 (1987), 151–186 | DOI | MR

[14] Ganikhodzhaev N.N., “Pure phases of the ferromagnetic Potts model with three states on a second-order Bethe lattice”, Theoretical and Mathematical Physics, 85:2 (1990), 1125–1134 | DOI | MR

[15] Ganikhodzhaev N., Mukhamedov F., Mendes J.F.F., “On the three state Potts model with competing interactions on the Bethe lattice”, Journal of Statistical Mechanics: Theory and Experiment, 2006:08 (2006), P08012 | DOI

[16] Ganikhodzhaev N., Mukhamedov F., Pah C.H., “Phase diagram of the three states Potts model with next nearest neighbour interactions on the Bethe lattice”, Physics Letters A, 373:1 (2008), 33–38 | DOI | MR | Zbl

[17] Külske C., Rozikov U.A., Khakimov R.M., “Description of the translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, Journal of Statistical Physics, 156:1 (2014), 189–200 | DOI | MR | Zbl

[18] Külske C., Rozikov U.A., “Fuzzy transformations and extremality of Gibbs measures for the Potts model on a Cayley tree”, Random Structures and Algorithms, 50:4 (2017), 636–678 | DOI | MR | Zbl

[19] Khakimov R.M., Khaydarov F.Kh., “Translation-invariant and periodic Gibbs measures for the Potts model on a Cayley tree”, Theoretical and Mathematical Physics, 189:2 (2016), 1651–1659 | DOI | DOI | MR | Zbl

[20] Makhammadaliev M.T., “Extremality of the translation-invariant Gibbs measures for the Potts model with four states on the Cayley tree of order $k=3$”, Uzbek Mathematical Journal, 66:1 (2022), 117–132 | DOI | MR | Zbl

[21] Rozikov U.A., Khakimov R.M., Khaidarov F.Kh., “Extremality of the translation-invariant Gibbs measures for the Potts model on the Cayley tree”, Theoretical and Mathematical Physics, 196:1 (2018), 1043–1058 | DOI | DOI | MR | Zbl

[22] Ganikhodzhaev N.N., Rozikov U.A., “Description of periodic extreme Gibbs measures of some lattice models on a Cayley tree”, Theoretical and Mathematical Physics, 111:1 (1997), 480–486 | DOI | DOI | MR | Zbl

[23] Ganikhodjaev N.N., Rozikov U.A., “The Potts model with countable set of spin values on a Cayley tree”, Letters in Mathematical Physics, 75:2 (2006), 99–109 | DOI | MR | Zbl

[24] Rakhmatullaev M.M., “Weakly periodic Gibbs measures and ground states for the Potts model with competing interactions on the Cayley tree”, Theoretical and Mathematical Physics, 176:3 (2013), 1236–1251 | DOI | DOI | MR | Zbl

[25] Khakimov R.M., “The existence periodic Gibbs measures for the Potts model on the Cayley tree”, Uzbek Mathematical Journal, 2014, no. 3, 134–142 (in Russian) https://www.researchgate.net/publication/268333062

[26] Khakimov R.M., “New periodic Gibbs measures for q-state Potts model on a Cayley tree”, Journal of Siberian Federal University. Mathematics and Physics, 7:3 (2014), 297–304 | MR | Zbl

[27] Khakimov R.M., Makhammadaliev M.T., “Translation invariance of the periodic Gibbs measures for the Potts model on the Cayley tree”, Theoretical and Mathematical Physics, 199:2 (2019), 726–735 | DOI | DOI | MR | Zbl

[28] Rakhmatullaev M.M., “On weakly periodic Gibbs measures for the Potts model with external field on the Cayley tree”, Ukrainian Mathematical Journal, 68:4 (2016), 598–611 | DOI | MR | Zbl | Zbl

[29] Rozikov U.A., Khakimov R.M., “Periodic Gibbs measures for Potts model on the Cayley tree”, Theoretical and Mathematical Physics, 175:2 (2013), 699–709 | DOI | DOI | MR | MR | Zbl

[30] Rozikov U.A., Rakhmatullaev M.M., Khakimov R.M., “Periodic Gibbs measures for the Potts model in translation-invariant and periodic external fields on the Cayley tree”, Theoretical and Mathematical Physics, 210:1 (2022), 135–153 | DOI | DOI | MR | Zbl

[31] Kesten H., Stigum B.P., “Additional limit theorems for indecomposable multidimensional Galton–Watson processes”, The Annals of Mathematical Statistics, 37:6 (1966), 1463–1481 | DOI | MR | Zbl

[32] Külske C., Formentin M., “A symmetric entropy bound on the non-reconstruction regime of Markov chains on Galton–Watson trees”, Electronic Communications in Probability, 14 (2009), 587–596 | DOI | MR | Zbl

[33] Mossel E., “Survey: Information flow on trees”, 2004, arXiv: math/0406446 [math.PR] | DOI | MR

[34] Martinelli F., Sinclair A., Weitz D., “Fast mixing for independent sets, coloring and other models on trees”, Random Structures and Algorithms, 31:2 (2007), 134–172 | DOI | MR | Zbl