On relations between topological and algebraic structures of quasigroups
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 486-498 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study specific features of the relations between topological and algebraic structures of quasigroups and loops. We study the measurability of subsets of topological quasigroups and loops with respect to invariant measures. We study the family of non-measurable subsets in locally compact non-discrete loops. We find out the existence of locally $\mu $-zero subsets that are not $\mu $-zero in a locally compact left quasigroup that is not $\sigma $-compact. We study quotient spaces of measurable spaces on quasigroups. Moreover, we study homogeneous spaces of quasigroups and countable separability of subsets in them.
Mots-clés : quasigroup, quotient space
Keywords: topology, algebra, homogeneous space, measure, measurable spaces
@article{VUU_2024_34_4_a1,
     author = {S. V. Ludkovsky},
     title = {On relations between topological and algebraic structures of quasigroups},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {486--498},
     year = {2024},
     volume = {34},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a1/}
}
TY  - JOUR
AU  - S. V. Ludkovsky
TI  - On relations between topological and algebraic structures of quasigroups
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 486
EP  - 498
VL  - 34
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a1/
LA  - ru
ID  - VUU_2024_34_4_a1
ER  - 
%0 Journal Article
%A S. V. Ludkovsky
%T On relations between topological and algebraic structures of quasigroups
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 486-498
%V 34
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a1/
%G ru
%F VUU_2024_34_4_a1
S. V. Ludkovsky. On relations between topological and algebraic structures of quasigroups. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 486-498. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a1/

[1] Adhikari A., Adhikari M.R., Basic topology 1, Springer, Singapore, 2022 | DOI | Zbl

[2] Arhancet C., Kriegler C., “Projections, multipliers and decomposable maps on noncommutative $L_p$-spaces”, Mémoires de la Société Mathématique de France, 177 (2023), 1–185 | DOI | MR

[3] Arhangel’skii A., Tkachenko M., Topological groups and related structures, Atlantis Press, Paris, 2008 | DOI | MR | Zbl

[4] Cohn D.L., Measure theory, Birkhäuser, New York, 2013 | DOI | MR | Zbl

[5] Fell J.M.G., Doran R.S., Representations of $*$-algebras, locally compact groups, and Banach $*$-algebraic bundles, v. 1,2, Academic Press, Boston, 1988 | MR

[6] Farashahi A.G., “Classical harmonic analysis over spaces of complex measures on coset spaces of compact subgroups”, Analysis Mathematica, 43:3 (2017), 461–473 | DOI | MR | Zbl

[7] Losert V., “The derivation problem for group algebras”, Annals of Mathematics, 168:1 (2008), 221–246 | DOI | MR | Zbl

[8] Ludkovsky S.V., “Topological transformation groups of manifolds over non-Archimedean fields, their representations, and quasi-invariant measures. I”, Journal of Mathematical Sciences, 147:3 (2007), 6703–6846 | DOI | MR | Zbl

[9] Ludkovsky S.V., “Topological transformation groups of manifolds over non-Archimedean fields, their representations, and quasi-invariant measures. II”, Journal of Mathematical Sciences, 150:4 (2008), 2123–2223 | DOI | MR

[10] Ludkovsky S.V., “Stochastic processes on geometric loop groups, diffeomorphism groups of connected manifolds, and associated unitary representations”, Journal of Mathematical Sciences, 141:3 (2007), 1331–1384 | DOI | MR | Zbl

[11] Ludkovsky S.V., “Meta-centralizers of non locally compact group algebras”, Glasgow Mathematical Journal, 57:2 (2015), 349–364 | DOI | MR | Zbl

[12] Herfort W., Plaumann P., “Boolean and profinite loops”, Topology Proceedings, 37 (2011), 233–237 http://topology.nipissingu.ca/tp/reprints/v37/tp37015.pdf | MR | Zbl

[13] Kakkar V., “Boolean loops with compact left inner mapping groups are profinite”, Topology and its Applications, 244 (2018), 51–54 | DOI | MR | Zbl

[14] Smith J.D.H., An introduction to quasigroups and their representations, Chapman and Hall/CRC, New York, 2006 | DOI | MR

[15] Sabinin L.V., Smooth quasigroups and loops, Springer, Dordrecht, 1999 | DOI | MR

[16] Blahut R.E., Algebraic codes for data transmission, Cambridge University Press, Cambridge, 2003 | DOI | Zbl

[17] Gonzalez S., Couselo E., Markov V.T., Nechaev A.A., “Loop codes”, Discrete Mathematics and Applications, 14:2 (2004), 163–172 | DOI | DOI | MR | Zbl

[18] Markov V.T., Mikhalev A.V., Nechaev A.A., “Nonassociative algebraic structures in cryptography and coding”, Journal of Mathematical Sciences, 245:2 (2020), 178–196 | DOI | MR | Zbl

[19] Plotkin B., Universal algebra, algebraic logic, and databases, Springer, Dordrecht, 1994 | DOI | MR

[20] Ludkovsky S.V., “Existence of an invariant measure on a topological quasigroup”, Topology and its Applications, 275 (2020), 107147 | DOI | MR | Zbl

[21] Ludkowski S.V., “Left invariant measures on locally compact nonassociative core quasigroups”, Southeast Asian Bulletin of Mathematics, 46:3 (2022), 365–404 | MR | Zbl

[22] Engelking R., General topology, Heldermann, Berlin, 1989 | MR | Zbl

[23] Ludkovsky S.V., “Quotient and transversal mappings for topological quasigroups”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:3 (2023), 497–522 (in Russian) | DOI | MR | Zbl

[24] Christensen J.P.R., Topology and Borel structure, North-Holland, Elsevier, Amsterdam, 1974 | MR | Zbl

[25] Bogachev V.I., Measure theory, v. 1, Springer, Berlin, 2007 | DOI | MR | Zbl

[26] Kuratovskii K., Topology, v. 1, Mir, Moscow, 1966

[27] Kramarov S.O., Popov O.R., Dzhariev I.E., Petrov E.A., “Dynamics of link formation in networks structured on the basis of predictive terms”, Russian Technological Journal, 11:3 (2023), 17–29 (in Russian) | DOI

[28] Shum K.P., Ren X., Wang Y., “Semigroups on semilattice and the constructions of generalized cryptogroups”, Southeast Asian Bulletin of Mathematics, 38:5 (2014), 719–730 | MR | Zbl