Keywords: topology, algebra, homogeneous space, measure, measurable spaces
@article{VUU_2024_34_4_a1,
author = {S. V. Ludkovsky},
title = {On relations between topological and algebraic structures of quasigroups},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {486--498},
year = {2024},
volume = {34},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a1/}
}
TY - JOUR AU - S. V. Ludkovsky TI - On relations between topological and algebraic structures of quasigroups JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 486 EP - 498 VL - 34 IS - 4 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a1/ LA - ru ID - VUU_2024_34_4_a1 ER -
%0 Journal Article %A S. V. Ludkovsky %T On relations between topological and algebraic structures of quasigroups %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 486-498 %V 34 %N 4 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a1/ %G ru %F VUU_2024_34_4_a1
S. V. Ludkovsky. On relations between topological and algebraic structures of quasigroups. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 4, pp. 486-498. http://geodesic.mathdoc.fr/item/VUU_2024_34_4_a1/
[1] Adhikari A., Adhikari M.R., Basic topology 1, Springer, Singapore, 2022 | DOI | Zbl
[2] Arhancet C., Kriegler C., “Projections, multipliers and decomposable maps on noncommutative $L_p$-spaces”, Mémoires de la Société Mathématique de France, 177 (2023), 1–185 | DOI | MR
[3] Arhangel’skii A., Tkachenko M., Topological groups and related structures, Atlantis Press, Paris, 2008 | DOI | MR | Zbl
[4] Cohn D.L., Measure theory, Birkhäuser, New York, 2013 | DOI | MR | Zbl
[5] Fell J.M.G., Doran R.S., Representations of $*$-algebras, locally compact groups, and Banach $*$-algebraic bundles, v. 1,2, Academic Press, Boston, 1988 | MR
[6] Farashahi A.G., “Classical harmonic analysis over spaces of complex measures on coset spaces of compact subgroups”, Analysis Mathematica, 43:3 (2017), 461–473 | DOI | MR | Zbl
[7] Losert V., “The derivation problem for group algebras”, Annals of Mathematics, 168:1 (2008), 221–246 | DOI | MR | Zbl
[8] Ludkovsky S.V., “Topological transformation groups of manifolds over non-Archimedean fields, their representations, and quasi-invariant measures. I”, Journal of Mathematical Sciences, 147:3 (2007), 6703–6846 | DOI | MR | Zbl
[9] Ludkovsky S.V., “Topological transformation groups of manifolds over non-Archimedean fields, their representations, and quasi-invariant measures. II”, Journal of Mathematical Sciences, 150:4 (2008), 2123–2223 | DOI | MR
[10] Ludkovsky S.V., “Stochastic processes on geometric loop groups, diffeomorphism groups of connected manifolds, and associated unitary representations”, Journal of Mathematical Sciences, 141:3 (2007), 1331–1384 | DOI | MR | Zbl
[11] Ludkovsky S.V., “Meta-centralizers of non locally compact group algebras”, Glasgow Mathematical Journal, 57:2 (2015), 349–364 | DOI | MR | Zbl
[12] Herfort W., Plaumann P., “Boolean and profinite loops”, Topology Proceedings, 37 (2011), 233–237 http://topology.nipissingu.ca/tp/reprints/v37/tp37015.pdf | MR | Zbl
[13] Kakkar V., “Boolean loops with compact left inner mapping groups are profinite”, Topology and its Applications, 244 (2018), 51–54 | DOI | MR | Zbl
[14] Smith J.D.H., An introduction to quasigroups and their representations, Chapman and Hall/CRC, New York, 2006 | DOI | MR
[15] Sabinin L.V., Smooth quasigroups and loops, Springer, Dordrecht, 1999 | DOI | MR
[16] Blahut R.E., Algebraic codes for data transmission, Cambridge University Press, Cambridge, 2003 | DOI | Zbl
[17] Gonzalez S., Couselo E., Markov V.T., Nechaev A.A., “Loop codes”, Discrete Mathematics and Applications, 14:2 (2004), 163–172 | DOI | DOI | MR | Zbl
[18] Markov V.T., Mikhalev A.V., Nechaev A.A., “Nonassociative algebraic structures in cryptography and coding”, Journal of Mathematical Sciences, 245:2 (2020), 178–196 | DOI | MR | Zbl
[19] Plotkin B., Universal algebra, algebraic logic, and databases, Springer, Dordrecht, 1994 | DOI | MR
[20] Ludkovsky S.V., “Existence of an invariant measure on a topological quasigroup”, Topology and its Applications, 275 (2020), 107147 | DOI | MR | Zbl
[21] Ludkowski S.V., “Left invariant measures on locally compact nonassociative core quasigroups”, Southeast Asian Bulletin of Mathematics, 46:3 (2022), 365–404 | MR | Zbl
[22] Engelking R., General topology, Heldermann, Berlin, 1989 | MR | Zbl
[23] Ludkovsky S.V., “Quotient and transversal mappings for topological quasigroups”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:3 (2023), 497–522 (in Russian) | DOI | MR | Zbl
[24] Christensen J.P.R., Topology and Borel structure, North-Holland, Elsevier, Amsterdam, 1974 | MR | Zbl
[25] Bogachev V.I., Measure theory, v. 1, Springer, Berlin, 2007 | DOI | MR | Zbl
[26] Kuratovskii K., Topology, v. 1, Mir, Moscow, 1966
[27] Kramarov S.O., Popov O.R., Dzhariev I.E., Petrov E.A., “Dynamics of link formation in networks structured on the basis of predictive terms”, Russian Technological Journal, 11:3 (2023), 17–29 (in Russian) | DOI
[28] Shum K.P., Ren X., Wang Y., “Semigroups on semilattice and the constructions of generalized cryptogroups”, Southeast Asian Bulletin of Mathematics, 38:5 (2014), 719–730 | MR | Zbl