@article{VUU_2024_34_3_a8,
author = {M. G. Kozlova and V. A. Lukyanenko and O. O. Makarov},
title = {The choice of algorithms for solving a multi-agent routing problem based on solving related problems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {449--465},
year = {2024},
volume = {34},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a8/}
}
TY - JOUR AU - M. G. Kozlova AU - V. A. Lukyanenko AU - O. O. Makarov TI - The choice of algorithms for solving a multi-agent routing problem based on solving related problems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 449 EP - 465 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a8/ LA - ru ID - VUU_2024_34_3_a8 ER -
%0 Journal Article %A M. G. Kozlova %A V. A. Lukyanenko %A O. O. Makarov %T The choice of algorithms for solving a multi-agent routing problem based on solving related problems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 449-465 %V 34 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a8/ %G ru %F VUU_2024_34_3_a8
M. G. Kozlova; V. A. Lukyanenko; O. O. Makarov. The choice of algorithms for solving a multi-agent routing problem based on solving related problems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 449-465. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a8/
[1] Kozlova M.G., Lemtyuzhnikova D.V., Luk’yanenko V.A., Makarov O.O., “Models and algorithms for multiagent hierarchical routing with time windows”, Journal of Computer and Systems Sciences International, 62:5 (2023), 862–883 | DOI
[2] Kozlova M.G., Lukianenko V.A., Makarov O.O., “Multi-agent route planning in hierarchical networks”, Proceedings of Voronezh State University. Series: Systems Analysis and Information Technologies, 2023, no. 3, 32–50 (in Russian) | DOI
[3] Lemtyuzhnikova D.V., Luk’yanenko V.A., “Problems of studying difficult problems”, Intellektualizatsiya obrabotki informatsii (Tezisy dokladov 14 Mezhdunarodnoi konferentsii, Moscow 2022), Russian Academy of Sciences, Moscow, 2022, 437–442 (in Russian) http://www.machinelearning.ru/wiki/images/f/ff/Idp22.pdf | MR
[4] Bondarenko V.A., Maksimenko A.N., Geometric constructions and complexity in combinatorial optimization, LKI, Moscow, 2008
[5] Deza M.M., Laurent M., Geometry of cuts and metrics, Springer, Berlin, 1997 | DOI | MR | Zbl
[6] Gale D., “Neighboring vertices on a convex polyhedron”, Linear inequalities and related systems, Princeton University Press, Princeton, 1956, 255–263 | DOI | MR
[7] Zhuravlev Yu.I., Selected scientific works, Magistr, Moscow, 1998
[8] Emel’yanov S.V., Korovin S.K., Bobylev N.A., Bulatov A.V., Homotopies of extremal problems, Nauka, Moscow, 2001 | MR
[9] Lazarev A.A., Lemtyuzhnikova D.V., Werner F., “A metric approach for scheduling problems with minimizing the maximum penalty”, Applied Mathematical Modelling, 89, part 2 (2021), 1163–1176 | DOI | MR | Zbl
[10] Gakhov F.D., Cherskii Yu.I., Convolution type equations, Nauka, Moscow, 1978 | MR
[11] Belozub V., Kozlova M., Lukianenko V., “Approximated solution algorithms for Urysohn-type equations”, Journal of Physics: Conference Series, 1902:1 (2021), 01251 | DOI
[12] Petrovskii A.B., Spaces of sets and multisets, Editorial URSS, Moscow, 2003
[13] Makarov O.O., “Metaheuristics in related routing problems such as many traveling salesmen”, Tavricheskii Vestnik Informatiki i Matematiki, 2022, no. 3(56), 80–102 (in Russian) https://tvim.su/node/1134
[14] Burkhovetskii V.V., “Optimization and parallelization of simplified Balas’ and Christofides’ algorithm for the Traveling Salesman Problem”, Program Systems: Theory and Applications, 11:4(47) (2020), 3–16 (in Russian) | DOI
[15] Solomon benchmark https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark
[16] TSPLIB http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95
[17] Fan Hao, Ren Xiaoxue, Zhang Yueguang, Zhen Zimo, Fan Houming, “A chaotic genetic algorithm with variable neighborhood search for solving time-dependent Green VRPTW with fuzzy demand”, Symmetry, 14:10 (2022), 2115 | DOI
[18] Germanchuk M.S., “Solvability of pseudobulous conditional optimization problems of the type of many salesmen”, Taurida Journal of Computer Science Theory and Mathematics, 2021, no. 4(49), 30–55 | DOI
[19] Ivanko E.E., Stability and instability in discrete problems, Russian Academy of Sciences, Ural Branch, Yekaterinburg, 2013
[20] Ivanko E.E., “Adaptive stability in combinatorial optimization problems”, Proceedings of the Steklov Institute of Mathematics, 288:suppl. 1 (2015), 79–87 | DOI | MR
[21] Kozlova M.G., Lukianenko V.A., Makarov O.O., Program for building hierarchical routes in routing tasks on complex networks No 2024614604, Certificate of state registration of the computer program No 2024615891 Russian Federation: application 05.03.2024: publ. 13.03.2024; applicant V.I. Vernadsky Crimean Federal University, 2024