Capture of two coordinated evaders in a linear pursuit problem on time scales
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 397-409 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a finite-dimensional Euclidean space, we consider the problem of pursuit of two evaders by a group of pursuers, described by a linear system with a simple matrix on a given time scale. It is assumed that the evaders use the same control. The pursuers employ quasistrategies based on information about the initial positions and control history of the evaders. The set of admissible controls for each participant is a ball of unit radius centered at the origin, and the terminal sets are the origin. The goal of the group of pursuers is to capture the two evaders. In the study, we use the method of resolving functions as a base one, which allows us to obtain sufficient conditions for the solvability of the approach problem in a certain guaranteed time. In terms of the initial positions and parameters of the game, a sufficient condition for capturing the evaders is obtained.
Keywords: differential game, pursuer, evader, group pursuit, capture
Mots-clés : time scale
@article{VUU_2024_34_3_a5,
     author = {E. S. Mozhegova},
     title = {Capture of two coordinated evaders in a linear pursuit problem on time scales},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {397--409},
     year = {2024},
     volume = {34},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a5/}
}
TY  - JOUR
AU  - E. S. Mozhegova
TI  - Capture of two coordinated evaders in a linear pursuit problem on time scales
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 397
EP  - 409
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a5/
LA  - ru
ID  - VUU_2024_34_3_a5
ER  - 
%0 Journal Article
%A E. S. Mozhegova
%T Capture of two coordinated evaders in a linear pursuit problem on time scales
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 397-409
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a5/
%G ru
%F VUU_2024_34_3_a5
E. S. Mozhegova. Capture of two coordinated evaders in a linear pursuit problem on time scales. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 397-409. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a5/

[1] Isaacs R., Differential games, John Wiley and Sons, New York, 1965 | Zbl

[2] Pontryagin L.S., Selected scientific works, v. 2, Nauka, Moscow, 1988

[3] Krasovskii N.N., Subbotin A.I., Positional differential games, Nauka, Moscow, 1974 | MR

[4] Blaquière A., Gérard F., Leitmann G., Quantitative and qualitative differential games, Academic Press, New York, 1969 | MR

[5] Friedman A., Differential games, Wiley-Interscience, New York, 1971 | MR | Zbl

[6] Hájek O., Pursuit games, Academic Press, New York, 1975 | MR | Zbl

[7] Leitmann G., Cooperative and non-cooperative many players differential games, Springer, Vienna, 1974 | DOI | MR | Zbl

[8] Nahin P.J., Chases and escapes: The mathematics of pursuit and evasion, Princeton University Press, Princeton, 2007 | MR | Zbl

[9] Petrosyan L.A., Pursuit differential games, Leningrad State University, Leningrad, 1977

[10] Bakolas E., “Optimal guidance of the isotropic rocket in the presence of wind”, Journal of Optimization Theory and Applications, 162:3 (2014), 954–974 | DOI | MR | Zbl

[11] Sinha A., Kumar S.R., Mukherjee D., “Three-agent time-constrained cooperative pursuit–evasion”, Journal of Intelligent and Robotic Systems, 104:2 (2022), 28 | DOI

[12] Lozano E., Becerra I., Ruiz U., Bravo L., Murrieta-Cid R., “A visibility-based pursuit–evasion game between two nonholonomic robots in environments with obstacles”, Autonomous Robots, 46:2 (2022), 349–371 | DOI

[13] Chikrii A.A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[14] Grigorenko N.L., Mathematical methods for controlling of several dynamic processes, Moscow State University, Moscow, 1990

[15] Blagodatskikh A.I., Petrov N.N., Conflict interaction of managed objects groups, Udmurt State University, Izhevsk, 2009

[16] Bopardikar S.D., Bullo F., Hespanha J.P., “On discrete-time pursuit–evasion games with sensing limitations”, IEEE Transactions on Robotics, 24:6 (2008), 1429–1439 | DOI

[17] Casini M., Garulli A., “A new class of pursuer strategies for the discrete-time lion and man problem”, Automatica, 100 (2019), 162–170 | DOI | MR | Zbl

[18] Kazimirova R., Ibragimov G., Pansera B.A., Ibragimov A., “Multi-pursuer and one-evader evasion differential game with integral constraints for an infinite system of binary differential equations”, Mathematics, 12:8 (2024), 1183 | DOI

[19] Aulbach B., Hilger S., “Linear dynamic processes with inhomogeneous time scale”, Nonlinear Dynamics and Quantum Dynamical Systems (Contributions to the International Seminar ISAM-90, held in Gaussing (GDR), March 19–23, 1990), De Gruyter, Berlin, Boston, 1990, 9–20 | DOI | MR

[20] Hilger S., “Analysis on measure chains — a unified approach to continuous and discrete calculus”, Results in Mathematics, 18:1 (1990), 18–56 | DOI | MR | Zbl

[21] Bohner M., Peterson A., Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003 | DOI | MR | Zbl

[22] Benchohra M., Henderson J., Ntouyas S., Impulsive differential equations and inclusions, Hindawi Publishing Corporation, New York, 2006 | MR | Zbl

[23] Martins N., Torres D.F.M., “Necessary conditions for linear noncooperative $N$-player delta differential games on time scales”, Discussiones Mathematicae. Differential Inclusions, Control and Optimization, 31:1 (2011), 23–37 | DOI | MR | Zbl

[24] Mozhegova E.S., Petrov N.N., “The differential game “Cossacks–robbers” on time scales”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 62 (2023), 56–70 | DOI | MR | Zbl

[25] Petrov N.N., “Multiple capture of a given number of evaders in the problem of simple pursuit with phase restrictions on timescales”, Dynamic Games and Applications, 12:2 (2022), 632–642 | DOI | MR | Zbl

[26] Petrov N.N., Mozhegova E.S., “Simple pursuit problem with phase constraints of two coordinated evaders on time scales”, Doklady Mathematics, 108:suppl. 1 (2023), S86–S91 | DOI | MR | Zbl

[27] Cabada A., Vivero D.R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Mathematical and Computer Modelling, 43:1–2 (2006), 194–207 | DOI | MR | Zbl

[28] Guseinov G.Sh., “Integration on time scales”, Journal of Mathematical Analysis and Applications, 285:1 (2003), 107–127 | DOI | MR | Zbl

[29] Zhan Zaidong, Wei W., “Necessary conditions for a class of optimal control problems on time scales”, Abstract and Applied Analysis, 2009:1 (2009), 974394 | DOI | MR | Zbl

[30] Petrov N.N., “Controllability of autonomous systems”, Differentsial’nye Uravneniya, 4:4 (1968), 606–617 (in Russian) | Zbl

[31] Mozhegova E.S., “On a group pursuit problem on time scales”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:1 (2023), 130–140 (in Russian) | DOI | MR | Zbl