Complete characterization of bridge graphs with local antimagic chromatic number $2$
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 375-396 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An edge labeling of a connected graph $G = (V, E)$ is said to be local antimagic if it is a bijection $f\colon E \to\{1,\ldots ,|E|\}$ such that for any pair of adjacent vertices $x$ and $y$, $f^+(x)\not= f^+(y)$, where the induced vertex label $f^+(x)= \sum f(e)$, with $e$ ranging over all the edges incident to $x$. The local antimagic chromatic number of $G$, denoted by $\chi_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of $G$. In this paper, we characterize $s$-bridge graphs with local antimagic chromatic number $2$.
Keywords: local antimagic labeling, local antimagic chromatic number, $s$-bridge graphs
@article{VUU_2024_34_3_a4,
     author = {G.-Ch. Lau and W. Ch. Shiu and M. Ch. Nalliah and R. Zhang and K. Premalatha},
     title = {Complete characterization of bridge graphs with local antimagic chromatic number~$2$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {375--396},
     year = {2024},
     volume = {34},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/}
}
TY  - JOUR
AU  - G.-Ch. Lau
AU  - W. Ch. Shiu
AU  - M. Ch. Nalliah
AU  - R. Zhang
AU  - K. Premalatha
TI  - Complete characterization of bridge graphs with local antimagic chromatic number $2$
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 375
EP  - 396
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/
LA  - en
ID  - VUU_2024_34_3_a4
ER  - 
%0 Journal Article
%A G.-Ch. Lau
%A W. Ch. Shiu
%A M. Ch. Nalliah
%A R. Zhang
%A K. Premalatha
%T Complete characterization of bridge graphs with local antimagic chromatic number $2$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 375-396
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/
%G en
%F VUU_2024_34_3_a4
G.-Ch. Lau; W. Ch. Shiu; M. Ch. Nalliah; R. Zhang; K. Premalatha. Complete characterization of bridge graphs with local antimagic chromatic number $2$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 375-396. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/

[1] Arumugam S., Premalatha K., Bača M., Semaničová–Feňovčíková A., “Local antimagic vertex coloring of a graph”, Graphs and Combinatorics, 33:2 (2017), 275–285 | DOI | MR | Zbl

[2] Arumugam S., Lee Yi-Chun, Premalatha K., Wang Tao-Ming, “On local antimagic vertex coloring for corona products of graphs”, 2018, arXiv: 1808.04956v1 [math.CO] | DOI

[3] Hartsfield N., Ringel G., Pearls in graph theory, Academic Press, Boston, 1994 | MR | Zbl

[4] Haslegrave J., “Proof of a local antimagic conjecture”, Discrete Mathematics and Theoretical Computer Science, 20:1 (2018) | DOI | MR | Zbl

[5] Lau Gee-Choon, Ng Ho-Kuen, Shiu Wai-Chee, “Affirmative solutions on local antimagic chromatic number”, Graphs and Combinatorics, 36:5 (2020), 1337–1354 | DOI | MR | Zbl

[6] Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen, “On local antimagic chromatic number of cycle-related join graphs”, Discussiones Mathematicae Graph Theory, 41:1 (2021), 133–152 | DOI | MR | Zbl

[7] Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen, “On local antimagic chromatic number of graphs with cut-vertices”, Iranian Journal of Mathematical Sciences and Informatics, 19:1 (2024), 1–17 | DOI | MR

[8] Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen, “On number of pendants in local antimagic chromatic number”, Journal of Discrete Mathematical Sciences and Cryptography, 25:8 (2022), 2673–2682 | DOI | MR | Zbl

[9] Lau Gee-Choon, Shiu Wai-Chee, Soo Chee-Xian, “On local antimagic chromatic number of spider graphs”, Journal of Discrete Mathematical Sciences and Cryptography, 26:2 (2023), 303–339 | DOI | MR