Complete characterization of bridge graphs with local antimagic chromatic number~$2$
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 375-396
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			An edge labeling of a connected graph $G = (V, E)$ is said to be local antimagic if it is a bijection $f\colon E \to\{1,\ldots ,|E|\}$ such that for any pair of adjacent vertices $x$ and $y$, $f^+(x)\not= f^+(y)$, where the induced vertex label $f^+(x)= \sum f(e)$, with $e$ ranging over all the edges incident to $x$. The local antimagic chromatic number of $G$, denoted by $\chi_{la}(G)$, is the minimum number of distinct induced vertex labels over all local antimagic labelings of $G$. In this paper, we characterize $s$-bridge graphs with local antimagic chromatic number $2$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
local antimagic labeling, local antimagic chromatic number, $s$-bridge graphs
                    
                    
                    
                  
                
                
                @article{VUU_2024_34_3_a4,
     author = {G.-Ch. Lau and W. Ch. Shiu and M. Ch. Nalliah and R. Zhang and K. Premalatha},
     title = {Complete characterization of bridge graphs with local antimagic chromatic number~$2$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {375--396},
     publisher = {mathdoc},
     volume = {34},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/}
}
                      
                      
                    TY - JOUR AU - G.-Ch. Lau AU - W. Ch. Shiu AU - M. Ch. Nalliah AU - R. Zhang AU - K. Premalatha TI - Complete characterization of bridge graphs with local antimagic chromatic number~$2$ JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 375 EP - 396 VL - 34 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/ LA - en ID - VUU_2024_34_3_a4 ER -
%0 Journal Article %A G.-Ch. Lau %A W. Ch. Shiu %A M. Ch. Nalliah %A R. Zhang %A K. Premalatha %T Complete characterization of bridge graphs with local antimagic chromatic number~$2$ %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 375-396 %V 34 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/ %G en %F VUU_2024_34_3_a4
G.-Ch. Lau; W. Ch. Shiu; M. Ch. Nalliah; R. Zhang; K. Premalatha. Complete characterization of bridge graphs with local antimagic chromatic number~$2$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 375-396. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/
