@article{VUU_2024_34_3_a4,
author = {G.-Ch. Lau and W. Ch. Shiu and M. Ch. Nalliah and R. Zhang and K. Premalatha},
title = {Complete characterization of bridge graphs with local antimagic chromatic number~$2$},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {375--396},
year = {2024},
volume = {34},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/}
}
TY - JOUR AU - G.-Ch. Lau AU - W. Ch. Shiu AU - M. Ch. Nalliah AU - R. Zhang AU - K. Premalatha TI - Complete characterization of bridge graphs with local antimagic chromatic number $2$ JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 375 EP - 396 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/ LA - en ID - VUU_2024_34_3_a4 ER -
%0 Journal Article %A G.-Ch. Lau %A W. Ch. Shiu %A M. Ch. Nalliah %A R. Zhang %A K. Premalatha %T Complete characterization of bridge graphs with local antimagic chromatic number $2$ %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 375-396 %V 34 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/ %G en %F VUU_2024_34_3_a4
G.-Ch. Lau; W. Ch. Shiu; M. Ch. Nalliah; R. Zhang; K. Premalatha. Complete characterization of bridge graphs with local antimagic chromatic number $2$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 375-396. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a4/
[1] Arumugam S., Premalatha K., Bača M., Semaničová–Feňovčíková A., “Local antimagic vertex coloring of a graph”, Graphs and Combinatorics, 33:2 (2017), 275–285 | DOI | MR | Zbl
[2] Arumugam S., Lee Yi-Chun, Premalatha K., Wang Tao-Ming, “On local antimagic vertex coloring for corona products of graphs”, 2018, arXiv: 1808.04956v1 [math.CO] | DOI
[3] Hartsfield N., Ringel G., Pearls in graph theory, Academic Press, Boston, 1994 | MR | Zbl
[4] Haslegrave J., “Proof of a local antimagic conjecture”, Discrete Mathematics and Theoretical Computer Science, 20:1 (2018) | DOI | MR | Zbl
[5] Lau Gee-Choon, Ng Ho-Kuen, Shiu Wai-Chee, “Affirmative solutions on local antimagic chromatic number”, Graphs and Combinatorics, 36:5 (2020), 1337–1354 | DOI | MR | Zbl
[6] Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen, “On local antimagic chromatic number of cycle-related join graphs”, Discussiones Mathematicae Graph Theory, 41:1 (2021), 133–152 | DOI | MR | Zbl
[7] Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen, “On local antimagic chromatic number of graphs with cut-vertices”, Iranian Journal of Mathematical Sciences and Informatics, 19:1 (2024), 1–17 | DOI | MR
[8] Lau Gee-Choon, Shiu Wai-Chee, Ng Ho-Kuen, “On number of pendants in local antimagic chromatic number”, Journal of Discrete Mathematical Sciences and Cryptography, 25:8 (2022), 2673–2682 | DOI | MR | Zbl
[9] Lau Gee-Choon, Shiu Wai-Chee, Soo Chee-Xian, “On local antimagic chromatic number of spider graphs”, Journal of Discrete Mathematical Sciences and Cryptography, 26:2 (2023), 303–339 | DOI | MR