On multidimensional exact solutions of the nonlinear diffusion equation of the pantograph type with variable delay
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 359-374 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a multidimensional pantograph-type nonlinear diffusion equation with a linearly increasing time delay and scaling with respect to spatial variables in the source (sink). It is proposed to construct exact solutions by the reduction method using two ansatzes with a quadratic dependence on spatial variables. The dependence of the solution on spatial variables is found from a system of algebraic equations, and the dependence on time is found from a system of ordinary differential equations with a linearly increasing delay of the argument. A number of examples of exact solutions are given, both radially symmetric and anisotropic with respect to spatial variables.
Keywords: nonlinear diffusion equation of pantograph type, increasing time delay, reduction
Mots-clés : scaling in spatial variables, exact solutions
@article{VUU_2024_34_3_a3,
     author = {A. A. Kosov and \`E. I. Semenov},
     title = {On multidimensional exact solutions of the nonlinear diffusion equation of the pantograph type with variable delay},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {359--374},
     year = {2024},
     volume = {34},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a3/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - È. I. Semenov
TI  - On multidimensional exact solutions of the nonlinear diffusion equation of the pantograph type with variable delay
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 359
EP  - 374
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a3/
LA  - ru
ID  - VUU_2024_34_3_a3
ER  - 
%0 Journal Article
%A A. A. Kosov
%A È. I. Semenov
%T On multidimensional exact solutions of the nonlinear diffusion equation of the pantograph type with variable delay
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 359-374
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a3/
%G ru
%F VUU_2024_34_3_a3
A. A. Kosov; È. I. Semenov. On multidimensional exact solutions of the nonlinear diffusion equation of the pantograph type with variable delay. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 359-374. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a3/

[1] Myshkis A.D., Linear differential equations with retarded argument, Gostekhizdat, Moscow–Leningrad, 1951 | MR | Zbl

[2] El’sgol’ts L.E., Norkin S.B., Introduction to the theory of differential equations with deviating argument, Nauka, Moscow, 1971 | MR

[3] Ockendon J.R., Tayler A.B., “The dynamics of a current collection system for an electric locomotive”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 322:1551 (1971), 447–468 | DOI | MR

[4] Zhabko A.P., Chizhova O.N., “Stability analysis of homogeneous differential-difference equation with linear delay”, Vestnik Sankt-Peterburgskogo Universiteta. Seriya 10. Prikladnaya Matematika. Informatika. Protsessy Upravleniya, 2015, no. 3, 105–115 (in Russian)

[5] Benaissa Abbes, Benaissa Abdelkader, Messaoudi Salim A., “Global existence and energy decay of solutions for the wave equation with a time varying delay term in the weakly nonlinear internal feedbacks”, Journal of Mathematical Physics, 53:12 (2012), 123514 | DOI | MR | Zbl

[6] Zennir H., “Stabilization for solutions of plate equation with time-varying delay and weak-viscoelasticity in $\mathbb{R}^{n}$”, Russian Mathematics, 64:9 (2020), 21–33 | DOI | DOI | MR | Zbl

[7] Polyanin A.D., Sorokin V.G., “Exact solutions of nonlinear partial differential equations with pantograph type variable delay”, Vestnik Natsional’nogo Issledovatel’skogo Yadernogo Universiteta “MIFI”, 9:4 (2020), 315–328 (in Russian) | DOI

[8] Polyanin A.D., Sorokin V.G., “Nonlinear pantograph-type diffusion PDEs: exact solutions and the principle of analogy”, Mathematics, 9:5 (2021), 511 | DOI

[9] Polyanin A.D., Sorokin V.G., Zhurov A.I., Differential equations with delay. Properties, methods, solutions and models, Ishlinsky Institute for Problems in Mechanics RAS, Moscow, 2022

[10] Kosov A.A., Semenov E.I., “Multidimensional exact solutions to the reaction–diffusion system with power-law nonlinear terms”, Siberian Matematical Journal, 58:4 (2017), 619–632 | DOI | DOI | MR | Zbl

[11] Kosov A.A., Semenov E.I., “On exact multidimensional solutions of a nonlinear system of reaction–diffusion equations”, Differential Equations, 54:1 (2018), 106–120 | DOI | DOI | MR | Zbl

[12] Kosov A.A., Semenov E.I., “New exact solutions of the diffusion equation with power nonlinearity”, Siberian Mathematical Journal, 63:6 (2022), 1102–1116 | DOI | MR | Zbl

[13] Polyanin A.D., Zaitsev V.F., Zhurov A., Methods for solving nonlinear equations of mathematical physics and mechanics, Fizmatlit, Moscow, 2005

[14] Polyanin A.D., Zhurov A.I., Methods of separation of variables and exact solutions of nonlinear equations of mathematical physics, Ishlinsky Institute for Problems in Mechanics RAS, Moscow, 2020

[15] Kosov A.A., Semenov E.I., “On exact solutions of a multidimensional system of elliptic equations with power-law nonlinearitiess”, Differential Equations, 59:12 (2023), 1627–1649 | DOI | DOI | MR | Zbl

[16] Gantmakher F.R., The theory of matrices, Nauka, Moscow, 1988 | MR

[17] Deza E.I., Special numbers of the natural series, Librokom, Moscow, 2011 | MR