@article{VUU_2024_34_3_a2,
author = {V. A. Zaitsev},
title = {On arbitrary matrix coefficient assignment for the characteristic matrix polynomial of block matrix linear control systems},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {339--358},
year = {2024},
volume = {34},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a2/}
}
TY - JOUR AU - V. A. Zaitsev TI - On arbitrary matrix coefficient assignment for the characteristic matrix polynomial of block matrix linear control systems JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 339 EP - 358 VL - 34 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a2/ LA - en ID - VUU_2024_34_3_a2 ER -
%0 Journal Article %A V. A. Zaitsev %T On arbitrary matrix coefficient assignment for the characteristic matrix polynomial of block matrix linear control systems %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 339-358 %V 34 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a2/ %G en %F VUU_2024_34_3_a2
V. A. Zaitsev. On arbitrary matrix coefficient assignment for the characteristic matrix polynomial of block matrix linear control systems. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 339-358. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a2/
[1] Popov V.M., “Hyperstability and optimality of automatic systems with several control functions”, Revue Roumaine des Sciences Techniques. Série Électrotechnique et Énergétique, 9:4 (1964), 629–690 | MR
[2] Wonham W., “On pole assignment in multi-input controllable linear systems”, IEEE Transactions on Automatic Control, 12:6 (1967), 660–665 | DOI
[3] Brockett R., Byrnes C., “Multivariable Nyquist criteria, root loci, and pole placement: a geometric viewpoint”, IEEE Transactions on Automatic Control, 26:1 (1981), 271–284 | DOI | MR | Zbl
[4] Wang X., “Pole placement by static output feedback”, Journal of Mathematical Systems, Estimation, and Control, 2:2 (1992), 205–218 | MR
[5] Wang X., “Grassmannian, central projection, and output feedback pole assignment of linear systems”, IEEE Transactions on Automatic Control, 41:6 (1996), 786–794 | DOI | MR | Zbl
[6] Syrmos V.L., Abdallah C.T., Dorato P., Grigoriadis K., “Static output feedback — A survey”, Automatica, 33:2 (1997), 125–137 | DOI | MR | Zbl
[7] Sadabadi M.S., Peaucelle D., “From static output feedback to structured robust static output feedback: A survey”, Annual Reviews in Control, 42 (2016), 11–26 | DOI
[8] Shumafov M.M., “Stabilization of linear control systems and pole assignment problem: A survey”, Vestnik St. Petersburg University, Mathematics, 52:4 (2019), 349–367 | DOI | MR | Zbl
[9] Zaitsev V., Kim I., “Matrix eigenvalue spectrum assignment for linear control systems by static output feedback”, Linear Algebra and its Applications, 613 (2021), 115–150 | DOI | MR | Zbl
[10] Dennis Jr.J.E., Traub J.F., Weber R.P., “The algebraic theory of matrix polynomials”, SIAM Journal on Numerical Analysis, 13:6 (1976), 831–845 | DOI | MR | Zbl
[11] Dennis Jr.J.E., Traub J.F., Weber R.P., On the matrix polynomial, lambda-matrix and block eigenvalue problems, Technical Report No. 71–109 from Carnegie Mellon University Computer Science Department, Pittsburg, PA, 1971 | MR
[12] Gohberg I., Lancaster P., Rodman L., Matrix polynomials, SIAM, Philadelphia, 2009 | DOI | MR | Zbl