Inverse coefficient problem for a partial differential equation with multi-term orders fractional Riemann–Liouville derivatives
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 321-338 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work studies direct initial boundary value and inverse coefficient determination problems for a one-dimensional partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. The unique solvability of the direct problem is investigated and a priori estimates for its solution are obtained in weighted spaces, which will be used for studying the inverse problem. Then, the inverse problem is equivalently reduced to a nonlinear integral equation. The fixed-point principle is used to prove the unique solvability of this equation.
Keywords: fractional order equation, direct problem, inverse problem, Fourier method, Mittag–Leffler function, uniqueness
Mots-clés : Laplace transform, existence
@article{VUU_2024_34_3_a1,
     author = {D. K. Durdiev and I. I. Hasanov},
     title = {Inverse coefficient problem for a partial differential equation with multi-term orders fractional {Riemann{\textendash}Liouville} derivatives},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {321--338},
     year = {2024},
     volume = {34},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a1/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - I. I. Hasanov
TI  - Inverse coefficient problem for a partial differential equation with multi-term orders fractional Riemann–Liouville derivatives
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 321
EP  - 338
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a1/
LA  - en
ID  - VUU_2024_34_3_a1
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A I. I. Hasanov
%T Inverse coefficient problem for a partial differential equation with multi-term orders fractional Riemann–Liouville derivatives
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 321-338
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a1/
%G en
%F VUU_2024_34_3_a1
D. K. Durdiev; I. I. Hasanov. Inverse coefficient problem for a partial differential equation with multi-term orders fractional Riemann–Liouville derivatives. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 321-338. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a1/

[1] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999 | MR | Zbl

[2] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[3] Pskhu A.V., “Fractional diffusion equation with discretely distributed differentiation operator”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 13 (2016), 1078–1098 (in Russian) | DOI | MR | Zbl

[4] Luchko Yu., “Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation”, Journal of Mathematical Analysis and Applications, 374:2 (2011), 538–548 | DOI | MR | Zbl

[5] Daftardar–Gejji V., Bhalekar S., “Boundary value problems for multi-term fractional differential equations”, Journal of Mathematical Analysis and Applications, 345:2 (2008), 754–765 | DOI | MR | Zbl

[6] Jiang H., Liu Fawang, Turner I.W., Burrage K., “Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain”, Computers and Mathematics with Applications, 64:10 (2012), 3377–3388 | DOI | MR | Zbl

[7] Liu Xiao-jing, Wang Ji-zeng, Wang Xiao-min, Zhou You-he, “Exact solutions of multi-term fractional diffusion-wave equations with Robin type boundary conditions”, Applied Mathematics and Mechanics, 35:1 (2014), 49–62 | DOI | MR | Zbl

[8] Schumer R., Benson D.A., Meerschaert M.M., Baeumer B., “Fractal mobile/immobile solute transport”, Water Resources Research, 39:10 (2003) | DOI

[9] Durdiev D.K., Shishkina E.L., Sitnik S.M., “The explicit formula for solution of anomalous diffusion equation in the multi-dimensional space”, Lobachevskii Journal of Mathematics, 42:6 (2021), 1264–1273 | DOI | MR | Zbl

[10] Sultanov M.A., Durdiev D.K., Rahmonov A.A., “Construction of an explicit solution of a time-fractional multidimensional differential equation”, Mathematics, 9:17 (2021), 2052 | DOI

[11] Hasanov I.I., Akramova D.I., Rakhmonov A.A., “Investigation of the Cauchy problem for one fractional order equation with the Riemann–Liouville operator”, Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, 27:1 (2023), 64–80 (in Russian) | DOI | MR | Zbl

[12] Ionkin N.I., “Solution of a boundary-value problem in heat conduction with a nonclassical boundary condition”, Differential Equations, 13 (1977), 204–211 | MR | MR | Zbl | Zbl

[13] Ivanchov M.I., Pabyrivs’ka N.V., “Simultaneous determination of two coefficients of a parabolic equation in the case of nonlocal and integral conditions”, Ukrainian Mathematical Journal, 53:5 (2001), 674–684 | DOI | MR | Zbl

[14] Kochubei A., Luchko Yu., Handbook of fractional calculus with applications, v. 2, Fractional differential equations, De Gruyter, 2019 | DOI | MR

[15] Durdiev D.K., Turdiev H.H., “Inverse coefficient problem for a time-fractional wave equation with initial-boundary and integral type overdetermination conditions”, Mathematical Methods in the Applied Sciences, 47:6 (2024), 5329–5340 | DOI | MR

[16] Turdiev H.H., “Inverse coefficient problems for a time-fractional wave equation with the generalized Riemann–Liouville time derivative”, Russian Mathematics, 67:10 (2023), 14–29 | DOI | DOI | MR | Zbl

[17] Durdiev D.K., “Inverse coefficient problem for the time-fractional diffusion equation”, Eurasian Journal of Mathematical and Computer Applications, 9:1 (2021), 44–54 | DOI | MR

[18] Durdiev U.D., “Problem of determining the reaction coefficient in a fractional diffusion equation”, Differential Equations, 57:9 (2021), 1195–1204 | DOI | DOI | MR | Zbl

[19] Durdiev D.K., “Convolution kernel determination problem for the time-fractional diffusion equation”, Physica D: Nonlinear Phenomena, 457 (2024), 133959 | DOI | MR | Zbl

[20] Durdiev D.K., Rahmonov A.A., Bozorov Z.R., “A two-dimensional diffusion coefficient determination problem for the time-fractional equation”, Mathematical Methods in the Applied Sciences, 44:13 (2021), 10753–10761 | DOI | MR | Zbl

[21] Ma Wenjun, Sun Liangliang, “Inverse potential problem for a semilinear generalized fractional diffusion equation with spatio-temporal dependent coefficients”, Inverse Problems, 39:1 (2023), 015005 | DOI | MR | Zbl

[22] Abramowitz M., Stegun I.A., Handbook of mathematical functions with formulas, graphics and mathematical tables, Dover, New York, 1972 | MR

[23] Mathai A.M., Saxena R.K., Haubold H.J., The H-function. Theory and application, Springer, New York, 2010 | DOI | MR

[24] Gorenflo R., Kilbas A.A., Mainardi F., Rogosin S.V., Mittag–Leffler functions, related topics and applications, Springer, Berlin–Heidelberg, 2014 | DOI | MR | Zbl