On the existence of a positive solution to a boundary value problem for a third-order nonlinear functional differential equation with an integral boundary condition at one of the ends of the segment
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 311-320 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article studies the existence of positive solutions on the segment $[0,1]$ of a two-point boundary value problem for one nonlinear third-order functional differential equation with an integral boundary condition at one of the ends of the segment. Using the Go–Krasnoselsky fixed point theorem and some properties of the Green's function of the corresponding differential operator, sufficient conditions for the existence of at least one positive solution to the problem under consideration are obtained. An example is given to illustrate the results obtained.
Keywords: functional differential equation, boundary value problem, cone, Green's function
Mots-clés : positive solution
@article{VUU_2024_34_3_a0,
     author = {G. \`E. Abduragimov},
     title = {On the existence of a positive solution to a boundary value problem for a third-order nonlinear functional differential equation with an integral boundary condition at one of the ends of the segment},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {311--320},
     year = {2024},
     volume = {34},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a0/}
}
TY  - JOUR
AU  - G. È. Abduragimov
TI  - On the existence of a positive solution to a boundary value problem for a third-order nonlinear functional differential equation with an integral boundary condition at one of the ends of the segment
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 311
EP  - 320
VL  - 34
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a0/
LA  - ru
ID  - VUU_2024_34_3_a0
ER  - 
%0 Journal Article
%A G. È. Abduragimov
%T On the existence of a positive solution to a boundary value problem for a third-order nonlinear functional differential equation with an integral boundary condition at one of the ends of the segment
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 311-320
%V 34
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a0/
%G ru
%F VUU_2024_34_3_a0
G. È. Abduragimov. On the existence of a positive solution to a boundary value problem for a third-order nonlinear functional differential equation with an integral boundary condition at one of the ends of the segment. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 3, pp. 311-320. http://geodesic.mathdoc.fr/item/VUU_2024_34_3_a0/

[1] Yao Qingliu, Feng Yuqiang, “The existence of solution for a third-order two-point boundary value problem”, Applied Mathematics Letters, 15:2 (2002), 227–232 | DOI | MR | Zbl

[2] Liu Zeqing, Ume Jeong Sheok, Kang Shin Min, “Positive solutions of a singular nonlinear third order two-point boundary value problem”, Journal of Mathematical Analysis and Applications, 326:1 (2007), 589–601 | DOI | MR | Zbl

[3] El-Shahed M., “Positive solutions for nonlinear singular third order boundary value problem”, Communications in Nonlinear Science and Numerical Simulation, 14:2 (2009), 424–429 | DOI | MR | Zbl

[4] Qu Haidong, “Positive solutions of boundary value problems of nonlinear third-order differential equations”, International Journal of Mathematical Analysis, 4:17 (2010), 855–860 https://www.m-hikari.com/ijma/ijma-2010/ijma-17-20-2010/quhaidongIJMA17-20-2010.pdf | MR | Zbl

[5] Almuthaybiri S.S., Tisdell C.C., “Sharper existence and uniqueness results for solutions to third-order boundary value problems”, Mathematical Modelling and Analysis, 25:3 (2020), 409–420 | DOI | MR | Zbl

[6] Yang Chen, “Existence and uniqueness of solutions for a third-order three-point boundary value problem via measure of noncompactness”, Journal of Mathematics, 2022:1 (2022), 1157154 | DOI | MR

[7] Sun Jian-Ping, Li Hai-Bao, “Monotone positive solution of nonlinear third-order BVP with integral boundary conditions”, Boundary Value Problems, 2010:1 (2010), 874959 | DOI | MR | Zbl

[8] Guo Yanping, Yang Fei, “Positive solutions for third-order boundary-value problems with the integral boundary conditions and dependence on the first-order derivatives”, Journal of Applied Mathematics, 2013 (2013), 721909 | DOI | MR | Zbl

[9] Djourdem H., Benaicha S., “Positive solutions of nonlinear third-order boundary value problem with integral boundary conditions”, Malaya Journal of Matematik, 7:2 (2019), 269–275 | DOI | MR

[10] Zhou Wen-Xue, Zhang Jian-Gang, Li Jie-Mei, “Existence of multiple positive solutions for singular boundary value problems of nonlinear fractional differential equations”, Advances in Difference Equations, 2014:1 (2014), 97 | DOI | MR

[11] Azbelev N.V., Maksimov V.P., Rakhmatullina L.F., Introduction to the theory of functional differential equations, Nauka, Moscow, 1991 | MR

[12] Korpusov M.O.,Panin A.A., Lectures on linear and nonlinear functional analysis. Part III. Nonlinear analysis, Faculty of Physics, Moscow State University, Moscow, 2015

[13] Krasnosel’skii M.A., Positive solutions of operator equations, P. Noordhoff, Gronigen, 1964 | MR | MR | Zbl