Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 286-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

At present, non-Hermitian topological systems continue to be actively studed. In a rigorous approach, we study one of the key non-Hermitian systems — the Hatano–Nelson model $H$. We find the Green function for this Hamiltonian. Using the Green function, we analytically obtain the eigenvalues and eigenfunctions of $H$ for finite and semi-infinite chains, as well as for an infinite chain with a local potential. We discuss the non-Hermitian skin effect for the models mentioned above. We also describe the boundary between localized and resonant eigenfunctions (for the zero spectral parameter, this is the boundary between non-Hermitian topological phases).
Keywords: Hatano–Nelson model, eigenvalues, eigenfunctions, non-Hermitian skin effect
@article{VUU_2024_34_2_a6,
     author = {Yu. P. Chuburin and T. S. Tinyukova},
     title = {Spectral properties and {non-Hermitian} skin effect in the {Hatano{\textendash}Nelson} model},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {286--298},
     year = {2024},
     volume = {34},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a6/}
}
TY  - JOUR
AU  - Yu. P. Chuburin
AU  - T. S. Tinyukova
TI  - Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 286
EP  - 298
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a6/
LA  - en
ID  - VUU_2024_34_2_a6
ER  - 
%0 Journal Article
%A Yu. P. Chuburin
%A T. S. Tinyukova
%T Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 286-298
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a6/
%G en
%F VUU_2024_34_2_a6
Yu. P. Chuburin; T. S. Tinyukova. Spectral properties and non-Hermitian skin effect in the Hatano–Nelson model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 286-298. http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a6/

[1] Okuma N., Sato M., “Non-Hermitian topological phenomena: A review”, Annual Review of Condensed Matter Physics, 14 (2023), 83–107 | DOI

[2] Ashida Yuto, Gong Zongping, Ueda Masahito, “Non-Hermitian physics”, Advances in Physics, 69:3 (2020), 249–435 | DOI

[3] Gong Zongping, Ashida Yuto, Kawabata Kohei, Takasan Kazuaki, Higashikawa Sho, Ueda Masahito, “Topological phases of non-Hermitian systems”, Physical Review X, 8:3 (2018), 031079 | DOI

[4] Bergholtz E.J., Budich J.C., Kunst F.K., “Exceptional topology of non-Hermitian systems”, Reviews of Modern Physics, 93:1 (2021), 015005 | DOI | MR

[5] Lin Rijia, Tai Tommy, Li Linhu, Lee Ching Hua, “Topological non-Hermitian skin effect”, Frontiers of Physics, 18:5 (2023), 53605 | DOI

[6] Yao Shunyu, Wang Zhong, “Edge states and topological invariants of non-Hermitian systems”, Physical Review Letters, 121:8 (2018), 086803 | DOI

[7] Kawabata Kohei, Numasawa Tokiro, Ryu Shinsei, “Entanglement phase transition induced by the non-Hermitian skin effect”, Physical Review X, 13:2 (2023), 021007 | DOI

[8] Hatano Naomichi, Nelson D.R., “Localization transitions in non-Hermitian quantum mechanics”, Physical Review Letters, 77:3 (1996), 570–573 | DOI | MR

[9] Hasan M.Z., Kane C.L., “Colloquium: Topological insulators”, Reviews of Modern Physics, 82:4 (2010), 3045–3067 | DOI

[10] von Oppen Felix, Peng Yang, Pientka Falko, “Topological superconducting phases in one dimension”, Topological Aspects of Condensed Matter Physics, Oxford University Press, Oxford, 2017, 387–450 | DOI

[11] Zhang Xiujuan, Zhang Tian, Lu Ming-Hui, Chen Yan-Feng, “A review on non-Hermitian skin effect”, Advances in Physics: X, 7:1 (2022), 2109431 | DOI

[12] Chuburin Yu.P., Tinyukova T.S., “Zero-energy states in the Kitaev finite and semi-infinite model”, Physica E: Low-dimensional Systems and Nanostructures, 146 (2023), 115528 | DOI

[13] Taylor J.R., Uberall H., “Scattering theory: The quantum theory of nonrelativistic collisions”, Physics Today, 26:5 (1973), 55–56 | DOI

[14] Reed M., Simon B., Methods of modern mathematical physics, v. 4, Analysis of operators, Elsevier Science, 1978 | MR

[15] Chuburin Yu.P., Tinyukova T.S., “Behavior of Andreev states for topological phase transition”, Theoretical and Mathematical Physics, 208:1 (2021), 977–992 | DOI | MR | Zbl