Mots-clés : Jost solutions
@article{VUU_2024_34_2_a4,
author = {U.A. Hoitmetov and Sh. K. Sobirov},
title = {Integration of the {mKdV} equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {248--266},
year = {2024},
volume = {34},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a4/}
}
TY - JOUR AU - U.A. Hoitmetov AU - Sh. K. Sobirov TI - Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 248 EP - 266 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a4/ LA - ru ID - VUU_2024_34_2_a4 ER -
%0 Journal Article %A U.A. Hoitmetov %A Sh. K. Sobirov %T Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 248-266 %V 34 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a4/ %G ru %F VUU_2024_34_2_a4
U.A. Hoitmetov; Sh. K. Sobirov. Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 248-266. http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a4/
[1] Wadati M., “The exact solution of the modified Korteweg–de Vries equation”, Journal of the Physical Society of Japan, 32:6 (1972), 1681–1681 | DOI | MR
[2] Lamb G.L., Elements of soliton theory, Wiley, New York, 1980 | MR | Zbl
[3] Bogoyavlenskii O.I., Overturning solitons, Nauka, Moscow, 1991 | MR
[4] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Method for solving the Korteweg–de Vries equation”, Physical Review Letters, 19:19 (1967), 1095–1097 | DOI | MR
[5] Khasanov A.B., Hoitmetov U.A., “Integration of the loaded Korteweg–de Vries equation with a self-consistent source in the class of rapidly decreasing complex-valued functions”, Transactions of National Academy of Sciences of Azerbaijan. Series of Physical-Technical and Mathematical Sciences, 42:4 (2022), 87–101 | MR | Zbl
[6] Hoitmetov U.A., “Integration of the loaded KdV equation with a self-consistent source of integral type in the class of rapidly decreasing complex-valued functions”, Siberian Advances in Mathematics, 32:2 (2022), 102–114 | DOI | MR
[7] Hoitmetov U., “Integration of the loaded general Korteweg–de Vries equation in the class of rapidly decreasing complex-valued functions”, Eurasian Mathematical Journal, 13:2 (2022), 43–54 | DOI | MR | Zbl
[8] Khasanov A.B., Hoitmetov U.A., “On complex-valued solutions of the general loaded Korteweg–de Vries equation with a source”, Differential Equations, 58:3 (2022), 381–391 | DOI | MR | Zbl
[9] Hoitmetov U.A., “On the Cauchy problem for the mKdV-sine-Gordon equation with an additional term”, Acta Applicandae Mathematicae, 184:1 (2023), 7 | DOI | MR | Zbl
[10] Hoitmetov U.A., “Integration of the loaded mKdV-sine-Gordon equation with a source”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 20:2 (2023), 859–879 | MR
[11] Sobirov Sh.K., Hoitmetov U.A., “Integration of the modified Korteweg–de Vries equation with time-dependent coefficients and with a self-consistent source”, Vladikavkazskii Matematicheskii Zhurnal, 25:3 (2023), 123–142 (in Russian) | DOI
[12] Khasanov A.B., Hoitmetov U.A., Sobirov Sh.Q., “Integration of the mKdV equation with nonstationary coefficients and additional terms in the case of moving eigenvalues”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 61 (2023), 137–155 | DOI | MR | Zbl
[13] Mamedov K.A., “Integration of mKdV equation with a self-consistent source in the class of finite density functions in the case of moving eigenvalues”, Russian Mathematics, 64:10 (2020), 66–78 | DOI | DOI | MR | Zbl
[14] Babajanov B.A., Ruzmetov M.M., “Solution of the finite Toda lattice with self-consistent source”, Lobachevskii Journal of Mathematics, 44:7 (2023), 2587–2600 | DOI | MR | Zbl
[15] Babajanov B.A., Ruzmetov M.M., Sadullaev Sh.O., “Integration of the finite complex Toda lattice with a self-consistent source”, Partial Differential Equations in Applied Mathematics, 7 (2023), 100510 | DOI | MR
[16] Babajanov B.A., Azamatov A.Sh., Atajanova R.B., “Integration of the Kaup–Boussinesq system with time-dependent coefficients”, Theoretical and Mathematical Physics, 216:1 (2023), 961–972 | DOI | DOI | MR | Zbl
[17] Babajanov B., Fečkan M., Babadjanova A., “On the differential-difference sine-Gordon equation with an integral type source”, Mathematica Slovaca, 73:6 (2023), 1499–1510 | DOI | MR
[18] Matsutani Shigeki, Tsuru Hideo, “Reflectionless quantum wire”, Journal of the Physical Society of Japan, 60:11 (1991), 3640–3644 | DOI | MR
[19] Ono Hiroaki, “Soliton fission in anharmonic lattices with reflectionless inhomogeneity”, Journal of the Physical Society of Japan, 61:12 (1992), 4336–4343 | DOI
[20] Kakutani Tsunehiko, Ono Hiroaki, “Weak non-linear hydromagnetic waves in a cold collision-free plasma”, Journal of the Physical Society of Japan, 26:5 (1969), 1305–1318 | DOI | MR
[21] Wu Jianping, Geng Xianguo, “Inverse scattering transform and soliton classification of the coupled modified Korteweg–de Vries equation”, Communications in Nonlinear Science and Numerical Simulation, 53 (2017), 83–93 | DOI | MR | Zbl
[22] Urazboev G.U., Xoitmetov U.A., Babadjanova A.K., “Integration of the matrix modified Korteweg–de Vries equation with an integral-type source”, Theoretical and Mathematical Physics, 203:3 (2020), 734–746 | DOI | DOI | MR | Zbl
[23] Vaneeva O., “Lie symmetries and exact solutions of variable coefficient mKdV equations: An equivalence based approach”, Communications in Nonlinear Science and Numerical Simulation, 17:2 (2012), 611–618 | DOI | MR | Zbl
[24] Pradhan K., Panigrahi P.K., “Parametrically controlling solitary wave dynamics in the modified Korteweg–de Vries equation”, Journal of Physics A: Mathematical and General, 39:20 (2006), 343–348 | DOI | MR
[25] Wazwaz A.-M., “Two new integrable modified KdV equations, of third- and fifth-order, with variable coefficients: multiple real and multiple complex soliton solutions”, Waves in Random and Complex Media, 31:5 (2021), 867–878 | DOI | MR | Zbl
[26] Ablowitz M.J., Segur H., Solitons and inverse scattering transform, SIAM, Philadelphia, 1981 | MR | MR | Zbl
[27] Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and nonlinear wave equations, Academic Press, London, 1982 | MR | Zbl
[28] Vladimirov V.S., Equations of mathematical physics, Nauka, Moscow, 1967 | MR