Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 248-266
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The work is devoted to the integration of the modified Korteweg–de Vries equation with time-dependent coefficients, an additional term and an integral source in the class of rapidly decreasing functions using the inverse scattering problem method. In this paper, we consider the case when the Dirac operator included in the Lax pairs is not self-adjoint, therefore the eigenvalues of the Dirac operator can be multiples. The evolution of scattering data is obtained for the non-self-adjoint Dirac operator, the potential of which is a solution of the modified Korteweg–de Vries equation with time-dependent coefficients, with an additional term and with an integral source of a class of rapidly decreasing functions. An example is given to illustrate the application of the results obtained.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
non-self-adjoint Dirac operator, scattering data, Lax pairs
Mots-clés : Jost solutions
                    
                  
                
                
                Mots-clés : Jost solutions
@article{VUU_2024_34_2_a4,
     author = {U.A. Hoitmetov and Sh. K. Sobirov},
     title = {Integration of the {mKdV} equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {248--266},
     publisher = {mathdoc},
     volume = {34},
     number = {2},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a4/}
}
                      
                      
                    TY - JOUR AU - U.A. Hoitmetov AU - Sh. K. Sobirov TI - Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 248 EP - 266 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a4/ LA - ru ID - VUU_2024_34_2_a4 ER -
%0 Journal Article %A U.A. Hoitmetov %A Sh. K. Sobirov %T Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 248-266 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a4/ %G ru %F VUU_2024_34_2_a4
U.A. Hoitmetov; Sh. K. Sobirov. Integration of the mKdV equation with time-dependent coefficients, with an additional term and with an integral source in the class of rapidly decreasing functions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 248-266. http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a4/
