On the stability in variation of non-autonomous differential equations with perturbations
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 222-247 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we investigate the problem of stability in variation of solutions for nonautonomous differential equations. Some new sufficient conditions for the asymptotic or exponential stability for some classes of nonlinear time-varying differential equations are presented by using Lyapunov functions that are not necessarily smooth. The proposed approach for stability analysis is based on the determination of the bounds that characterize the asymptotic convergence of the solutions to a certain closed set containing the origin. Furthermore, some illustrative examples are given to prove the validity of the main results.
Keywords: nonautonomous differential equations, Lyapunov functions, asymptotic stability
Mots-clés : perturbation
@article{VUU_2024_34_2_a3,
     author = {M. Hammami and R. Hamlili and V. A. Zaitsev},
     title = {On the stability in variation of non-autonomous differential equations with perturbations},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {222--247},
     year = {2024},
     volume = {34},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a3/}
}
TY  - JOUR
AU  - M. Hammami
AU  - R. Hamlili
AU  - V. A. Zaitsev
TI  - On the stability in variation of non-autonomous differential equations with perturbations
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 222
EP  - 247
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a3/
LA  - en
ID  - VUU_2024_34_2_a3
ER  - 
%0 Journal Article
%A M. Hammami
%A R. Hamlili
%A V. A. Zaitsev
%T On the stability in variation of non-autonomous differential equations with perturbations
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 222-247
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a3/
%G en
%F VUU_2024_34_2_a3
M. Hammami; R. Hamlili; V. A. Zaitsev. On the stability in variation of non-autonomous differential equations with perturbations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 222-247. http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a3/

[1] Alekseev V.M., “An estimate for the perturbations of the solutions of ordinary differential equations. I”, Vestnik Moskovskogo Universiteta. Ser. Matematicheskaya, 1961, no. 2, 28–36 (in Russian) | Zbl

[2] Athanassov Z.S., “Perturbation theorems for nonlinear systems of ordinary differential equations”, Journal of Mathematical Analysis and Applications, 86:1 (1982), 194–207 | DOI | MR | Zbl

[3] BenAbdallah A., Hammami M.A., “On the output feedback stability for non-linear uncertain control systems”, International Journal of Control, 74:6 (2001), 547–551 | DOI | MR | Zbl

[4] BenAbdallah A., Dlala M., Hammami M.A., “Exponential stability of perturbed nonlinear systems”, Nonlinear Dynamics and Systems Theory, 5:4 (2005), 357–367 | MR

[5] BenAbdallah A., Dlala M., Hammami M.A., “A new Lyapunov function for stability of time-varying nonlinear perturbed systems”, Systems and Control Letters, 56:3 (2007), 179–187 | DOI | MR | Zbl

[6] Benabdallah A., Ellouze I., Hammami M.A., “Practical exponential stability of perturbed triangular systems and a separation principle”, Asian Journal of Control, 13:3 (2011), 445–448 | DOI | MR | Zbl

[7] Ben Hamed B., Ellouze I., Hammami M.A., “Practical uniform stability of nonlinear differential delay equations”, Mediterranean Journal of Mathematics, 8:4 (2011), 603–616 | DOI | MR | Zbl

[8] Ben Makhlouf A., Hammami M.A., “A nonlinear inequality and application to global asymptotic stability of perturbed systems”, Mathematical Methods in the Applied Sciences, 38:12 (2015), 2496–2505 | DOI | MR | Zbl

[9] Brauer F., Strauss A., “Perturbations of nonlinear systems of differential equations. III”, Journal of Mathematical Analysis and Applications, 31:1 (1970), 37–48 | DOI | MR | Zbl

[10] Brauer F., “Perturbations of nonlinear systems of differential equations. IV”, Journal of Mathematical Analysis and Applications, 37:1 (1972), 214–222 | DOI | MR | Zbl

[11] Brauer F., “Nonlinear differential equations with forcing terms”, Proceedings of the American Mathematical Society, 15:5 (1964), 758–765 | DOI | MR | Zbl

[12] Caraballo T., Hammami M.A., Mchiri L., “Practical stability of stochastic delay evolution equations”, Acta Applicandae Mathematicae, 142:1 (2016), 91–105 | DOI | MR | Zbl

[13] Caraballo T., Hammami M.A., Mchiri L., “Practical exponential stability of impulsive stochastic functional differential equations”, Systems and Control Letters, 109 (2017), 43–48 | DOI | MR | Zbl

[14] Corless M., Glielmo L., “On the exponential stability of singularly perturbed systems”, SIAM Journal on Control and Optimization, 30:6 (1992), 1338–1360 | DOI | MR | Zbl

[15] Corless M., Garofalo F., Glielmo L., “Robust stabilization of singularly perturbed nonlinear systems”, International Journal of Robust and Nonlinear Control, 3:2 (1993), 105–114 | DOI | MR | Zbl

[16] Damak H., Hammami M.A., Kalitine B., “On the global uniform asymptotic stability of time-varying systems”, Differential Equations and Dynamical Systems, 22:2 (2014), 113–124 | DOI | MR | Zbl

[17] Dannan F.M., Elaydi S., “Lipschitz stability of nonlinear systems of differential equations”, Journal of Mathematical Analysis and Applications, 113:2 (1986), 562–577 | DOI | MR | Zbl

[18] Dannan F.M., Elaydi S., “Lipschitz stability of nonlinear systems of differential equations. II. Liapunov functions”, Journal of Mathematical Analysis and Applications, 143:2 (1989), 517–529 | DOI | MR | Zbl

[19] Demidovich B.P., Lectures on the mathematical stability theory, Moscow State University, Moscow, 1998 | MR

[20] Dlala M., Hammami M.A., “Uniform exponential practical stability of impulsive perturbed systems”, Journal of Dynamical and Control Systems, 13:3 (2007), 373–386 | DOI | MR | Zbl

[21] Dlala M., Ghanmi B., Hammami M.A., “Exponential practical stability of nonlinear impulsive systems: Converse theorem and applications”, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 21:1 (2014), 37–64 | MR | Zbl

[22] Dragomir S.S., Some Gronwall type inequalities and applications, Science Direct Working Paper No. S1574-0358(04)70847-3, 2003 https://ssrn.com/abstract=3158353

[23] Ellouze I., Hammami M.A., “A separation principle of time-varying dynamical systems: A practical stability approach”, Mathematical Modelling and Analysis, 12:3 (2007), 297–308 | DOI | MR | Zbl

[24] Ghanmi B., Hadj Taieb N., Hammami M.A., “Growth conditions for exponential stability of time-varying perturbed systems”, International Journal of Control, 86:6 (2013), 1086–1097 | DOI | MR | Zbl

[25] Hahn W., Stability of motion, Springer, New York, 1967 | MR | Zbl

[26] HajSalem Z., Hammami M.A., Mabrouk M., “On the global uniform asymptotic stability of time-varying dynamical systems”, Studia Universitatis Babe{ş}-Bolyai Mathematica, 59:1 (2014), 57–67 | MR | Zbl

[27] Hammi M., Hammami M.A., “Non-linear integral inequalities and applications to asymptotic stability”, IMA Journal of Mathematical Control and Information, 32:4 (2015), 717–736 | DOI | MR

[28] Hammami M.A., “On the stability of nonlinear control systems with uncertainty”, Journal of Dynamical and Control Systems, 7:2 (2001), 171–179 | DOI | MR | Zbl

[29] Khalil H.K., Nonlinear systems, Prentice Hall, Upper Saddle River, 2002 | Zbl

[30] Lyapunov A.M., “The general problem of the stability of motion”, International Journal of Control, 55:3 (1992), 531–534 | DOI | MR

[31] Rouche N., Habets P., Laloy M., Stability theory by Liapunov’s direct method, Springer, New York, 1977 | MR | Zbl

[32] Teel A.R., Zaccarian L., “On “uniformity” in definitions of global asymptotic stability for time-varying nonlinear systems”, Automatica, 42:12 (2006), 2219–2222 | DOI | MR | Zbl

[33] Tun{ç} C., “Stability and boundedness of solutions of non-autonomous differential equations of second order”, Journal of Computational Analysis and Applications, 13:6 (2011), 1067–1074 | MR | Zbl

[34] Tun{ç} C., Tun{ç} O., “A note on certain qualitative properties of a second order linear differential system”, Applied Mathematics and Information Sciences, 9:2 (2015), 953–956 | MR

[35] Tun{ç} C., Tun{ç} O., “New qualitative criteria for solutions of Volterra integro-differential equations”, Arab Journal of Basic and Applied Sciences, 25:3 (2018), 158–165 | DOI

[36] Vidyasagar M., Nonlinear systems analysis, Prentice Hall, Englewood Cliffs, 1993 | Zbl

[37] Yoshizawa T., Stability theory by Liapunov’s second method, The Mathematical Society of Japan, Tokyo, 1966 | MR

[38] Zaitsev V.A., Kim I.G., “On the stability of linear time-varying differential equations”, Proceedings of the Steklov Institute of Mathematics, 319:suppl. 1 (2022), S298–S317 | DOI | DOI | MR | Zbl

[39] Zaitsev V., Kim I., “Exponential stabilization of linear time-varying differential equations with uncertain coefficients by linear stationary feedback”, Mathematics, 8:5 (2020), 853 | DOI | MR