Mots-clés : perturbation
@article{VUU_2024_34_2_a3,
author = {M. Hammami and R. Hamlili and V. A. Zaitsev},
title = {On the stability in variation of non-autonomous differential equations with perturbations},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {222--247},
year = {2024},
volume = {34},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a3/}
}
TY - JOUR AU - M. Hammami AU - R. Hamlili AU - V. A. Zaitsev TI - On the stability in variation of non-autonomous differential equations with perturbations JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 222 EP - 247 VL - 34 IS - 2 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a3/ LA - en ID - VUU_2024_34_2_a3 ER -
%0 Journal Article %A M. Hammami %A R. Hamlili %A V. A. Zaitsev %T On the stability in variation of non-autonomous differential equations with perturbations %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 222-247 %V 34 %N 2 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a3/ %G en %F VUU_2024_34_2_a3
M. Hammami; R. Hamlili; V. A. Zaitsev. On the stability in variation of non-autonomous differential equations with perturbations. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 222-247. http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a3/
[1] Alekseev V.M., “An estimate for the perturbations of the solutions of ordinary differential equations. I”, Vestnik Moskovskogo Universiteta. Ser. Matematicheskaya, 1961, no. 2, 28–36 (in Russian) | Zbl
[2] Athanassov Z.S., “Perturbation theorems for nonlinear systems of ordinary differential equations”, Journal of Mathematical Analysis and Applications, 86:1 (1982), 194–207 | DOI | MR | Zbl
[3] BenAbdallah A., Hammami M.A., “On the output feedback stability for non-linear uncertain control systems”, International Journal of Control, 74:6 (2001), 547–551 | DOI | MR | Zbl
[4] BenAbdallah A., Dlala M., Hammami M.A., “Exponential stability of perturbed nonlinear systems”, Nonlinear Dynamics and Systems Theory, 5:4 (2005), 357–367 | MR
[5] BenAbdallah A., Dlala M., Hammami M.A., “A new Lyapunov function for stability of time-varying nonlinear perturbed systems”, Systems and Control Letters, 56:3 (2007), 179–187 | DOI | MR | Zbl
[6] Benabdallah A., Ellouze I., Hammami M.A., “Practical exponential stability of perturbed triangular systems and a separation principle”, Asian Journal of Control, 13:3 (2011), 445–448 | DOI | MR | Zbl
[7] Ben Hamed B., Ellouze I., Hammami M.A., “Practical uniform stability of nonlinear differential delay equations”, Mediterranean Journal of Mathematics, 8:4 (2011), 603–616 | DOI | MR | Zbl
[8] Ben Makhlouf A., Hammami M.A., “A nonlinear inequality and application to global asymptotic stability of perturbed systems”, Mathematical Methods in the Applied Sciences, 38:12 (2015), 2496–2505 | DOI | MR | Zbl
[9] Brauer F., Strauss A., “Perturbations of nonlinear systems of differential equations. III”, Journal of Mathematical Analysis and Applications, 31:1 (1970), 37–48 | DOI | MR | Zbl
[10] Brauer F., “Perturbations of nonlinear systems of differential equations. IV”, Journal of Mathematical Analysis and Applications, 37:1 (1972), 214–222 | DOI | MR | Zbl
[11] Brauer F., “Nonlinear differential equations with forcing terms”, Proceedings of the American Mathematical Society, 15:5 (1964), 758–765 | DOI | MR | Zbl
[12] Caraballo T., Hammami M.A., Mchiri L., “Practical stability of stochastic delay evolution equations”, Acta Applicandae Mathematicae, 142:1 (2016), 91–105 | DOI | MR | Zbl
[13] Caraballo T., Hammami M.A., Mchiri L., “Practical exponential stability of impulsive stochastic functional differential equations”, Systems and Control Letters, 109 (2017), 43–48 | DOI | MR | Zbl
[14] Corless M., Glielmo L., “On the exponential stability of singularly perturbed systems”, SIAM Journal on Control and Optimization, 30:6 (1992), 1338–1360 | DOI | MR | Zbl
[15] Corless M., Garofalo F., Glielmo L., “Robust stabilization of singularly perturbed nonlinear systems”, International Journal of Robust and Nonlinear Control, 3:2 (1993), 105–114 | DOI | MR | Zbl
[16] Damak H., Hammami M.A., Kalitine B., “On the global uniform asymptotic stability of time-varying systems”, Differential Equations and Dynamical Systems, 22:2 (2014), 113–124 | DOI | MR | Zbl
[17] Dannan F.M., Elaydi S., “Lipschitz stability of nonlinear systems of differential equations”, Journal of Mathematical Analysis and Applications, 113:2 (1986), 562–577 | DOI | MR | Zbl
[18] Dannan F.M., Elaydi S., “Lipschitz stability of nonlinear systems of differential equations. II. Liapunov functions”, Journal of Mathematical Analysis and Applications, 143:2 (1989), 517–529 | DOI | MR | Zbl
[19] Demidovich B.P., Lectures on the mathematical stability theory, Moscow State University, Moscow, 1998 | MR
[20] Dlala M., Hammami M.A., “Uniform exponential practical stability of impulsive perturbed systems”, Journal of Dynamical and Control Systems, 13:3 (2007), 373–386 | DOI | MR | Zbl
[21] Dlala M., Ghanmi B., Hammami M.A., “Exponential practical stability of nonlinear impulsive systems: Converse theorem and applications”, Dynamics of Continuous, Discrete and Impulsive Systems Series A: Mathematical Analysis, 21:1 (2014), 37–64 | MR | Zbl
[22] Dragomir S.S., Some Gronwall type inequalities and applications, Science Direct Working Paper No. S1574-0358(04)70847-3, 2003 https://ssrn.com/abstract=3158353
[23] Ellouze I., Hammami M.A., “A separation principle of time-varying dynamical systems: A practical stability approach”, Mathematical Modelling and Analysis, 12:3 (2007), 297–308 | DOI | MR | Zbl
[24] Ghanmi B., Hadj Taieb N., Hammami M.A., “Growth conditions for exponential stability of time-varying perturbed systems”, International Journal of Control, 86:6 (2013), 1086–1097 | DOI | MR | Zbl
[25] Hahn W., Stability of motion, Springer, New York, 1967 | MR | Zbl
[26] HajSalem Z., Hammami M.A., Mabrouk M., “On the global uniform asymptotic stability of time-varying dynamical systems”, Studia Universitatis Babe{ş}-Bolyai Mathematica, 59:1 (2014), 57–67 | MR | Zbl
[27] Hammi M., Hammami M.A., “Non-linear integral inequalities and applications to asymptotic stability”, IMA Journal of Mathematical Control and Information, 32:4 (2015), 717–736 | DOI | MR
[28] Hammami M.A., “On the stability of nonlinear control systems with uncertainty”, Journal of Dynamical and Control Systems, 7:2 (2001), 171–179 | DOI | MR | Zbl
[29] Khalil H.K., Nonlinear systems, Prentice Hall, Upper Saddle River, 2002 | Zbl
[30] Lyapunov A.M., “The general problem of the stability of motion”, International Journal of Control, 55:3 (1992), 531–534 | DOI | MR
[31] Rouche N., Habets P., Laloy M., Stability theory by Liapunov’s direct method, Springer, New York, 1977 | MR | Zbl
[32] Teel A.R., Zaccarian L., “On “uniformity” in definitions of global asymptotic stability for time-varying nonlinear systems”, Automatica, 42:12 (2006), 2219–2222 | DOI | MR | Zbl
[33] Tun{ç} C., “Stability and boundedness of solutions of non-autonomous differential equations of second order”, Journal of Computational Analysis and Applications, 13:6 (2011), 1067–1074 | MR | Zbl
[34] Tun{ç} C., Tun{ç} O., “A note on certain qualitative properties of a second order linear differential system”, Applied Mathematics and Information Sciences, 9:2 (2015), 953–956 | MR
[35] Tun{ç} C., Tun{ç} O., “New qualitative criteria for solutions of Volterra integro-differential equations”, Arab Journal of Basic and Applied Sciences, 25:3 (2018), 158–165 | DOI
[36] Vidyasagar M., Nonlinear systems analysis, Prentice Hall, Englewood Cliffs, 1993 | Zbl
[37] Yoshizawa T., Stability theory by Liapunov’s second method, The Mathematical Society of Japan, Tokyo, 1966 | MR
[38] Zaitsev V.A., Kim I.G., “On the stability of linear time-varying differential equations”, Proceedings of the Steklov Institute of Mathematics, 319:suppl. 1 (2022), S298–S317 | DOI | DOI | MR | Zbl
[39] Zaitsev V., Kim I., “Exponential stabilization of linear time-varying differential equations with uncertain coefficients by linear stationary feedback”, Mathematics, 8:5 (2020), 853 | DOI | MR