On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 182-203
Voir la notice de l'article provenant de la source Math-Net.Ru
In the previous work of the authors, the concept of a regulated function of several variables $f\colon X\to\mathbb R$ was introduced, where $X\subseteq \mathbb R^n.$ The definition is based on the concept of a special partition of the set $X$ and the concept oscillation of the function $f$ on the elements of the partition. The space ${\rm G}(X)$ of such functions is Banach in the $\sup$-norm and is the closure of the space of step functions. In this paper, the space ${\rm G}^F(X)$ is defined and studied, which differs from ${\rm G}(X)$ in that here, in defining regulated functions of several variables, instead of special partitions, $F$-partitions are used: their elements are non-empty open sets measurable by the generalized Jordan measure (by the measure $m_{_{\!F}}$). (Symbol $F$ denotes the function generating the measure $m_{_{\!F}}.$) In the second part of the work, the concept of $F$-integrability of functions of several variables is defined. It is proved that if $X$ is the closure of a non-empty open bounded set $X_0\subseteq {\mathbb R}^n,$ measurable with respect to measure $m_{_{\!F}},$ and the function $f\colon X\to {\mathbb R}$ is integrable in the Riemann–Stieltjes sense with respect to the measure $m_{_{\!F}}$, then it is $F$-integrable. In this case, the values of the multiple integrals coincide. All functions from the space ${\rm G}^F(X)$ are $F$-integrable. The main properties of the Riemann–Stieltjes $F$-integral are proved.
Keywords:
step function, regulated function, generalized Jordan measure, Riemann–Stieltjes integral
@article{VUU_2024_34_2_a1,
author = {V. N. Baranov and V. I. Rodionov and A. G. Rodionova},
title = {On {Banach} spaces of regulated functions of several variables. {Analogue} of the {Riemann{\textendash}Stieltjes} integral},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {182--203},
publisher = {mathdoc},
volume = {34},
number = {2},
year = {2024},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a1/}
}
TY - JOUR AU - V. N. Baranov AU - V. I. Rodionov AU - A. G. Rodionova TI - On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 182 EP - 203 VL - 34 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a1/ LA - ru ID - VUU_2024_34_2_a1 ER -
%0 Journal Article %A V. N. Baranov %A V. I. Rodionov %A A. G. Rodionova %T On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 182-203 %V 34 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a1/ %G ru %F VUU_2024_34_2_a1
V. N. Baranov; V. I. Rodionov; A. G. Rodionova. On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 182-203. http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a1/