On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 182-203 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the previous work of the authors, the concept of a regulated function of several variables $f\colon X\to\mathbb R$ was introduced, where $X\subseteq \mathbb R^n.$ The definition is based on the concept of a special partition of the set $X$ and the concept oscillation of the function $f$ on the elements of the partition. The space ${\rm G}(X)$ of such functions is Banach in the $\sup$-norm and is the closure of the space of step functions. In this paper, the space ${\rm G}^F(X)$ is defined and studied, which differs from ${\rm G}(X)$ in that here, in defining regulated functions of several variables, instead of special partitions, $F$-partitions are used: their elements are non-empty open sets measurable by the generalized Jordan measure (by the measure $m_{_{\!F}}$). (Symbol $F$ denotes the function generating the measure $m_{_{\!F}}.$) In the second part of the work, the concept of $F$-integrability of functions of several variables is defined. It is proved that if $X$ is the closure of a non-empty open bounded set $X_0\subseteq {\mathbb R}^n,$ measurable with respect to measure $m_{_{\!F}},$ and the function $f\colon X\to {\mathbb R}$ is integrable in the Riemann–Stieltjes sense with respect to the measure $m_{_{\!F}}$, then it is $F$-integrable. In this case, the values of the multiple integrals coincide. All functions from the space ${\rm G}^F(X)$ are $F$-integrable. The main properties of the Riemann–Stieltjes $F$-integral are proved.
Keywords: step function, regulated function, generalized Jordan measure, Riemann–Stieltjes integral
@article{VUU_2024_34_2_a1,
     author = {V. N. Baranov and V. I. Rodionov and A. G. Rodionova},
     title = {On {Banach} spaces of regulated functions of several variables. {Analogue} of the {Riemann{\textendash}Stieltjes} integral},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {182--203},
     year = {2024},
     volume = {34},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a1/}
}
TY  - JOUR
AU  - V. N. Baranov
AU  - V. I. Rodionov
AU  - A. G. Rodionova
TI  - On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 182
EP  - 203
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a1/
LA  - ru
ID  - VUU_2024_34_2_a1
ER  - 
%0 Journal Article
%A V. N. Baranov
%A V. I. Rodionov
%A A. G. Rodionova
%T On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 182-203
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a1/
%G ru
%F VUU_2024_34_2_a1
V. N. Baranov; V. I. Rodionov; A. G. Rodionova. On Banach spaces of regulated functions of several variables. Analogue of the Riemann–Stieltjes integral. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 182-203. http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a1/

[1] Baranov V.N., Rodionov V.I., Rodionova A.G., “On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:3 (2023), 387–401 (in Russian) | DOI | MR

[2] Schwartz L., Analyse mathématique. I, Hermann, Paris, 1967 | MR | Zbl | Zbl

[3] Hönig Ch.S., Volterra–Stieltjes integral equations: functional analytic methods, linear constraints, North-Holland, Amsterdam, 1975 | MR | Zbl

[4] Dudek S., Olszowy L., “Measures of noncompactness and superposition operator in the space of regulated functions on an unbounded interval”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114:4 (2020), 168 | DOI | MR

[5] Dudek S., Olszowy L., “Measures of noncompactness in the space of regulated functions on an unbounded interval”, Annals of Functional Analysis, 13:4 (2022), 63 | DOI | MR

[6] Baranov V.N., Rodionov V.I., “On nonlinear metric spaces of functions of bounded variation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:3 (2022), 341–360 (in Russian) | DOI | MR | Zbl

[7] Monteiro G.A., Slavík A., “Extremal solutions of measure differential equations”, Journal of Mathematical Analysis and Applications, 444:1 (2016), 568–597 | DOI | MR | Zbl

[8] Di Piazza L., Marraffa V., Satco B., “Closure properties for integral problems driven by regulated functions via convergence results”, Journal of Mathematical Analysis and Applications, 466:1 (2018), 690–710 | DOI | MR | Zbl

[9] Olszowy L., “Measures of noncompactness in the space of regulated functions”, Journal of Mathematical Analysis and Applications, 476:2 (2019), 860–874 | DOI | MR | Zbl

[10] Olszowy L., Zając T., “Some inequalities and superposition operator in the space of regulated functions”, Advances in Nonlinear Analysis, 9:1 (2020), 1278–1290 | DOI | MR | Zbl

[11] Hanung Umi Mahnuna, Tvrdý M., “On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil”, Mathematica Bohemica, 144:4 (2019), 357–372 | DOI | MR | Zbl

[12] Cichoń M., Cichoń K., Satco B., “Measure differential inclusions through selection principles in the space of regulated functions”, Mediterranean Journal of Mathematics, 15:4 (2018), 148 | DOI | MR | Zbl

[13] Krejčí P., Monteiro G.A., Recupero V., “Non-convex sweeping processes in the space of regulated functions”, Communications on Pure and Applied Analysis, 21:9 (2022), 2999–3029 | DOI | MR | Zbl

[14] Estrada R., “The set of singularities of regulated functions in several variables”, Collectanea Mathematica, 63:3 (2012), 351–359 | DOI | MR | Zbl

[15] Nikolsky S.M., A course of mathematical analysis, v. 2, Mir, Moscow, 1977 | MR | Zbl

[16] Fréchet M., “Extension au cas des intégrales multiples d’une définition de l’intégrale due á Stieltjes”, Nouvelles Annales de Mathématiques. Serie 4, 10 (1910), 241–256 | Zbl

[17] Tonelli L., “Su alcuni concetti dell’analisi moderna”, Annali della Scuola Normale Superiore di Pisa. II. Ser, 11:1–2 (1942), 107–118 | MR | Zbl

[18] Shilov G.E., Gurevich B.L., Integral, measure and derivation. General theory, Nauka, Moscow, 1967 | Zbl

[19] Dai Jin, Mou Shuang, “The minimal affine total variation on $BV(\mathbb R^n)$”, Advances in Applied Mathematics, 147 (2023), 102504 | DOI | MR | Zbl

[20] Angeloni L., Vinti G., “Multidimensional sampling-Kantorovich operators in $BV$-spaces”, Open Mathematics, 21:1 (2023), 20220573 | DOI | MR