Direct and inverse problems for the Hilfer fractional differential equation
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 167-181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article studies direct and inverse problems for subdiffusion equations involving a Hilfer fractional derivative. An arbitrary positive self-adjoint operator $A$ is taken as the elliptic part of the equation. In particular, as the operator $A$ we can take the Laplace operator with the Dirichlet condition. First, the existence and uniqueness of a solution to the direct problem is proven. Then, using the representation of the solution to the direct problem, the existence and uniqueness of the inverse problem of finding the right-hand side of the equation, which depends only on the spatial variable, is proved.
Keywords: Cauchy problems, Hilfer derivatives, inverse problems
Mots-clés : subdiffusion equation
@article{VUU_2024_34_2_a0,
     author = {R. R. Ashurov and Yu. E. Fayziev and N. M. Tukhtaeva},
     title = {Direct and inverse problems for the {Hilfer} fractional differential equation},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {167--181},
     year = {2024},
     volume = {34},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a0/}
}
TY  - JOUR
AU  - R. R. Ashurov
AU  - Yu. E. Fayziev
AU  - N. M. Tukhtaeva
TI  - Direct and inverse problems for the Hilfer fractional differential equation
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 167
EP  - 181
VL  - 34
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a0/
LA  - ru
ID  - VUU_2024_34_2_a0
ER  - 
%0 Journal Article
%A R. R. Ashurov
%A Yu. E. Fayziev
%A N. M. Tukhtaeva
%T Direct and inverse problems for the Hilfer fractional differential equation
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 167-181
%V 34
%N 2
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a0/
%G ru
%F VUU_2024_34_2_a0
R. R. Ashurov; Yu. E. Fayziev; N. M. Tukhtaeva. Direct and inverse problems for the Hilfer fractional differential equation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 2, pp. 167-181. http://geodesic.mathdoc.fr/item/VUU_2024_34_2_a0/

[1] Hilfer R., Applications of fractional calculus in physics, World Scientific, Singapore, 2000 | DOI | MR | Zbl

[2] Hilfer R., “Threefold introduction to fractional derivatives”, Anomalous transport: foundations and applications, Wiley, Weinheim, 2007, 17–73 | DOI

[3] Gorenflo R., Kilbas A., Mainardi F., Rogosin S., Mittag–Leffler functions, related topics and applications, Springer, New York, 2014 | DOI | MR | Zbl

[4] Lizama C., “Abstract linear fractional evolution equations”, Handbook of fractional calculus with applications. Volume 2. Fractional Differential Equations, De Gruyter, Berlin–Boston, 2019, 465–497 | DOI | MR

[5] Podlubny I., Fractional differential equations, Academic Press, San Diego, 1999 | MR | Zbl

[6] Pskhu A.V., Fractional partial differential equations, Nauka, Moscow, 2005

[7] Dzhrbashyan M.M., Integral transforms and representation of functions in the complex domain, Nauka, Moscow, 1966 | MR

[8] Kilbas A.A., Srivastava H.M., Trujillo J.J., Theory and applications of fractional differential equations, Elsevier, Amsterdam, 2006 | MR | Zbl

[9] Hilfer R., Luchko Y., Tomovski Z., “Operational method for the solution of fractional differential equations with generalized Riemann–Liouville fractional derivatives”, Fractional Calculus and Applied Analysis, 12:3 (2009), 299–318 https://www.researchgate.net/publication/228746820 | MR | Zbl

[10] Tomovski Ž., Hilfer R., Srivastava H.M., “Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions”, Integral Transforms and Special Functions, 21:11 (2010), 797–814 | DOI | MR | Zbl

[11] Kabanikhin S.I., Inverse and ill-posed problems: Theory and applications, De Gruyter, Berlin–Boston, 2011 | DOI | MR

[12] Liu Yikan, Li Zhiyuan, Yamamoto Masahiro, “Inverse problems of determining sources of the fractional partial differential equations”, Handbook of fractional calculus with applications. Volume 2. Fractional Differential Equations, De Gruyter, Berlin–Boston, 2019, 411–430 | DOI | MR

[13] Karimov E.T., Turdiev Kh.N., “Direct and inverse source problems for sub-diffusion equation involving generalized Hilfer derivative with a non-classical boundary condition”, Bulletin of the Institute of Mathematics, 5:5 (2022), 53–59

[14] Karimov E., Toshtemirov B., “Non-local boundary value problem for a mixed-type equation involving the bi-ordinal Hilfer fractional differential operators”, Uzbek Mathematical Journal, 65:2 (2021), 61–77 | DOI | MR | Zbl

[15] Furati K., Iyiola O., Kirane M., “An inverse problem for a generalized fractional diffusion”, Applied Mathematics and Computation, 249 (2014), 24–31 | DOI | MR | Zbl

[16] Malik S., Aziz S., “An inverse source problem for a two parameter anomalous diffusion equation with nonlocal boundary conditions”, Computers and Mathematics with Applications, 73:12 (2017), 2548–2560 | DOI | MR | Zbl

[17] Ashurov R., Mukhiddinova A., “Inverse problem of determining the heat source density for the subdiffusion equation”, Differential Equations, 56:12 (2020), 1550–1563 | DOI | DOI | MR | Zbl

[18] Orlovsky D.G., “Determination of the parameter of the differential equation of fractional order with the Caputo derivative in Hilbert space”, Journal of Physics: Conference Series, 1205 (2019), 012042 | DOI | MR

[19] Ruzhansky M., Tokmagambetov N., Torebek B.T., “Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations”, Journal of Inverse and Ill-posed Problems, 27 (2019), 891–911 | DOI | MR | Zbl

[20] Fedorov V.E., Kostić M., “Identification problem for strongly degenerate evolution equations with the Gerasimov–Caputo derivative”, Differential Equations, 56:12 (2020), 1613–1627 | DOI | MR | Zbl

[21] Orlovsky D., Piskarev S., “Inverse problem with final overdetermination for time-fractional differential equation in a Banach space”, Journal of Inverse and Ill-posed Problems, 30:2 (2020), 221–237 | DOI | MR

[22] Fedorov V.E., Nazhimov R.R., “Inverse problems for a class of degenerate evolution equations with Riemann–Liouville derivative”, Fractional Calculus and Applied Analysis, 22:2 (2019), 271–286 | DOI | MR | Zbl

[23] Fedorov V.E., Nagumanova A.V., Avilovich A.S., “A class of inverse problems for evolution equations with the Riemann–Liouville derivative in the sectorial case”, Mathematical Methods in the Applied Sciences, 44:15 (2021), 11961–11969 | DOI | MR | Zbl

[24] Fedorov V.E., Ivanova N.D., Borel L.V., Avilovich A.S., “Nonlinear inverse problems for fractional differential equations with sectorial operators”, Lobachevskii Journal of Mathematics, 43:11 (2022), 3125–3141 | DOI | MR

[25] Ashurov R.R., Fayziev Yu.E., “Determination of fractional order and source term in a fractional subdiffusion equation”, Eurasian Mathematical Journal, 13:1 (2022), 19–31 | DOI | MR | Zbl