@article{VUU_2024_34_1_a8,
author = {S. I. Martynenko},
title = {Modeling of heat and mass transfer in the discontinuum approximation},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {137--164},
year = {2024},
volume = {34},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a8/}
}
TY - JOUR AU - S. I. Martynenko TI - Modeling of heat and mass transfer in the discontinuum approximation JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 137 EP - 164 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a8/ LA - ru ID - VUU_2024_34_1_a8 ER -
S. I. Martynenko. Modeling of heat and mass transfer in the discontinuum approximation. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 137-164. http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a8/
[1] Samarskii A.A., Mikhailov A.P., Mathematical modeling: Ideas. Methods. Examples, Fizmatlit, Moscow, 2005 | MR
[2] Mahian O., Kolsi L., Amani M., Estellé P., Ahmadi G., Kleinstreuer C., Marshall J.S., Taylor R.A., Abu-Nada E., Rashidi S., Niazmand H., Wongwises S., Hayat T., Kasaeian A., Pop I., “Recent advances in modeling and simulation of nanofluid flows — Part II: Applications”, Physics Reports, 791 (2019), 1–59 | DOI | MR
[3] Mbroh N.A., Munyakazi J.B., “A fitted operator finite difference method of lines for singularly perturbed parabolic convection–diffusion problems”, Mathematics and Computers in Simulation, 165 (2019), 156–171 | DOI | MR
[4] Wang Qian, Ren Yu-Xin, Pan Jianhua, Li Wanai, “Compact high order finite volume method on unstructured grids III: Variational reconstruction”, Journal of Computational Physics, 337 (2017), 1–26 | DOI | MR | Zbl
[5] Busto S., Dumbser M., Escalante C., Favrie N., Gavrilyuk S., “On high order ADER discontinuous Galerkin schemes for first order hyperbolic reformulations of nonlinear dispersive systems”, Journal of Scientific Computing, 87:2 (2021), 48 | DOI | MR | Zbl
[6] Yakovlev V.I., “From the history of fluid mechanics 17–19th centuries”, Bulletin of Perm University. Mathematics. Mechanics. Computer science, 2018, no. 1(40), 74–82 (in Russian) | DOI
[7] Loitsyanskii L.G., Mechanics of liquid and gas, Drofa, Moscow, 2003
[8] Blechta J., Málek J., Rajagopal K.R., “On the classification of incompressible fluids and a mathematical analysis of the equations that govern their motion”, SIAM Journal on Mathematical Analysis, 52:2 (2020), 1232–1289 | DOI | MR | Zbl
[9] Cebeci T., Bradshaw P., Physical and computational aspects of convective heat transfer, Springer, Berlin–Heidelberg, 1984 | DOI | MR | Zbl
[10] Gallagher I., “From Newton to Navier–Stokes, or how to connect fluid mechanics equations from microscopic to macroscopic scales”, Bulletin of the American Mathematical Society, 56:1 (2019), 65–85 | DOI | MR | Zbl
[11] Rachid M., “Incompressible Navier–Stokes–Fourier limit from the Landau equation”, Kinetic and Related Models, 14:4 (2021), 599–638 | DOI | MR | Zbl
[12] Han Guofeng, Liu Xiaoli, Huang Jin, Nawnit Kumar, Sun Liang, “Modified Boltzmann equation and extended Navier–Stokes equations”, Physics of Fluids, 32:2 (2020), 022001 | DOI
[13] Bobylev A.V., “Boltzmann equation and hydrodynamics beyond Navier–Stokes”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 376:2118 20170227 (2018) | DOI | MR | Zbl
[14] Jang Juhi, Kim Chanwoo, “Incompressible Euler limit from Boltzmann equation with diffuse boundary condition for analytic data”, Annals of PDE, 7:2 (2021), 22 | DOI | MR | Zbl
[15] Patankar S.V., Numerical heat transfer and fluid flow, CRC Press, Boca Raton, 2018 | DOI
[16] Patankar S.V., Computation of conduction and duct flow heat transfer, CRC Press, Boca Raton, 2017 | DOI
[17] Samarskii A.A., “Parabolic equations and difference methods for their solution”, Proceedings of All-Union Workshop on Differential Equations, 1958, Academy of Sciences of Armenian Soviet Socialist Republic, Yerevan, 1960, 148–160
[18] Fedorenko R.P., “A relaxation method for solving elliptic difference equations”, USSR Computational Mathematics and Mathematical Physics, 1:4 (1962), 1092–1096 | DOI | MR | Zbl
[19] Vanka S.P., “Block-implicit multigrid solution of Navier–Stokes equations in primitive variables”, Journal of Computational Physics, 65:1 (1986), 138–158 | DOI | MR | Zbl
[20] Svärd M., “A new Eulerian model for viscous and heat conducting compressible flows”, Physica A: Statistical Mechanics and its Applications, 506 (2018), 350–375 | DOI | MR | Zbl
[21] Xu Shenren, Zhao Jiazi, Wu Hangkong, Zhang Sen, Müller J.-D., Huang Huang, Rahmati M., Wang Dingxi, “A review of solution stabilization techniques for RANS CFD solvers”, Aerospace, 10:3 (2023), 230 | DOI
[22] Heinz S., “A mathematical solution to the computational fluid dynamics (CFD) dilemma”, Mathematics, 11:14 (2023), 3199 | DOI
[23] Deville M.O., “Exact solutions of the Navier–Stokes equations”, An Introduction to the Mechanics of Incompressible Fluids, Springer, Cham, 2022, 51–89 | DOI
[24] Zezin V.G., Mechanics of liquid and gas: textbook, South Ural State University, Chelyabinsk, 2016
[25] Caltagirone J.-P., “An alternative to the concept of continuous medium”, Acta Mechanica, 232:12 (2021), 4691–4703 | DOI | MR | Zbl
[26] Samarskii A.A., The theory of difference schemes, CRC Press, Boca Raton, 2001 | DOI | MR | MR
[27] Martynenko S.I., The robust multigrid technique: For black-box software, De Gruyter, Berlin, 2017 | DOI | MR | Zbl
[28] Martynenko S.I., Numerical methods for black-box software in computational continuum mechanics: Parallel high-performance computing, De Gruyter, Berlin, 2023 | DOI