Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 109-136
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $U$ be the set of admissible controls, $T>0$ and it be given a scale of Banach spaces $W[0;\tau]$, $\tau\in(0;T]$, such that the set of constrictions of functions from $W=W[0;T]$ to a closed segment $[0;\tau]$ coincides with $W[0;\tau]$; $F[\cdot;u]\colon W\to W$ be a controlled Volterra operator, $u\in U$. For the operator equation $x=F[x;u]$, $x\in W$, we introduce a comparison system in the form of functional-integral equation in the space $\mathbf{C}[0;T]$. We establish that, under some natural hypotheses on the operator $F$, the preservation of the global solvability of the comparison system pointed above is sufficient to preserve (under small perturbations of the right-hand side) the global solvability of the operator equation. This fact itself is analogous to some results which were obtained by the author earlier. The central result of the paper consists in a set of signs for stable global solvability of functional-integral equations mentioned above which do not use hypotheses similar to local Lipschitz continuity of the right-hand side. As a pithy example of special interest, we consider a nonlinear nonstationary Navier–Stokes system in the space $\mathbb{R}^3$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
second kind evolutionary Volterra equation of general form, functional-integral equation, comparison system, preservation of global solvability, uniqueness of solution, nonlinear nonstationary Navier–Stokes system
                    
                  
                
                
                @article{VUU_2024_34_1_a7,
     author = {A. V. Chernov},
     title = {Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {109--136},
     publisher = {mathdoc},
     volume = {34},
     number = {1},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a7/}
}
                      
                      
                    TY  - JOUR
AU  - A. V. Chernov
TI  - Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 109
EP  - 136
VL  - 34
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a7/
LA  - ru
ID  - VUU_2024_34_1_a7
ER  - 
                      
                      
                    %0 Journal Article
%A A. V. Chernov
%T Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 109-136
%V 34
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a7/
%G ru
%F VUU_2024_34_1_a7
                      
                      
                    A. V. Chernov. Investigation of conditions for preserving global solvability of operator equations by means of comparison systems in the form of functional-integral equations in $\mathbf{C}[0;T]$. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 109-136. http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a7/
                  
                