Mots-clés : initial moment
@article{VUU_2024_34_1_a5,
author = {I. N. Sergeev},
title = {Dependence on the initial moment of the measure of stability and instability of the zero solution},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {80--90},
year = {2024},
volume = {34},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a5/}
}
TY - JOUR AU - I. N. Sergeev TI - Dependence on the initial moment of the measure of stability and instability of the zero solution JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 80 EP - 90 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a5/ LA - ru ID - VUU_2024_34_1_a5 ER -
%0 Journal Article %A I. N. Sergeev %T Dependence on the initial moment of the measure of stability and instability of the zero solution %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 80-90 %V 34 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a5/ %G ru %F VUU_2024_34_1_a5
I. N. Sergeev. Dependence on the initial moment of the measure of stability and instability of the zero solution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 80-90. http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a5/
[1] Itô K., McKean H.P., Diffusion processes and their sample paths, Springer, Berlin, 1996 | DOI | MR | Zbl
[2] Khas’minskii R.Z., Stability of systems of differential equations under random perturbations of their parameters, Nauka, Moscow, 1969 | MR
[3] Venttsel’ A.D., Freidlin M.I., Fluctuations in dynamic systems under the influence of small random disturbances, Nauka, Moscow, 1979
[4] Sergeev I.N., “Definition and properties of measures of stability and instability of zero solution of a differential system”, Mathematical Notes, 113:6 (2023), 831–839 | DOI | DOI | MR | Zbl
[5] Sergeev I.N., “Determination of measures of stability and instability of the zero solution of a differential system”, Differentsial’nye Uravneniya, 59:6 (2023), 851–852 (in Russian)
[6] Sergeev I.N., “Properties of measures of stability and instability of the zero solution of a differential system”, Differentsial’nye Uravneniya, 59:11 (2023), 1577–1579 (in Russian)
[7] Sergeev I.N., “On Perron, Lyapunov and upper-limit stability properties of differential systems”, Trudy Seminara imeni I.G. Petrovskogo, 33 (2023), 353–423 (in Russian)
[8] Lyapunov A.M., General problem of motion stability, GITTL, Moscow–Leningrad, 1950 | MR
[9] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V., Theory of Lyapunov exponents and its application to problem of stability, Nauka, Moscow, 1966 | MR
[10] Demidovich B.P., Lectures on the mathematical theory of stability, Nauka, Moscow, 1967 | MR
[11] Sergeev I.N., “Definition and some properties of Perron stability”, Differential Equations, 55:5 (2019), 620–630 | DOI | DOI | MR | Zbl
[12] Perron O., “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Mathematische Zeitschrift, 31:1 (1930), 748–766 | DOI | MR
[13] Izobov N.A., Lyapunov exponents and stability, Cambridge Scientific Publishers, 2012 | MR | MR
[14] Sergeev I.N., “Lyapunov, Perron and upper-limit stability properties of autonomous differential systems”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 56 (2020), 63–78 (in Russian) | DOI | Zbl
[15] Sergeev I.N., “Massive and almost massive properties of stability and instability of differential systems”, Differentsial’nye Uravneniya, 57:11 (2021), 1576–1578 (in Russian) | DOI
[16] Sergeev I.N., Differential equations. Lecture course, Moscow State University, Moscow, 2023