Dependence on the initial moment of the measure of stability and instability of the zero solution
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 80-90
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The recently introduced concepts of stability measures and instability measures of different types are studied: Lyapunov, Perron or upper-limit. These concepts allow a natural probabilistic interpretation, which shows the dependence of specific properties of solutions of a differential system, starting close to its zero solution, on arbitrarily small perturbations of the initial values of the Cauchy problem with a fixed initial moment. The work examines precisely the dependence of these measures on the initial moment. It has been proved that this dependence is completely absent for one-dimensional and autonomous systems, as well as for many types of stability or instability of linear systems. Moreover, it has been proved that the extreme values of the measures of stability or instability themselves are always invariant with respect to the choice of the initial moment. Finally, an example of a system is given for which this dependence, on the contrary, manifests itself to the maximum possible extent.
Keywords: differential system, Lyapunov stability, Perron stability, upper-limit stability, measure of stability
Mots-clés : initial moment
@article{VUU_2024_34_1_a5,
     author = {I. N. Sergeev},
     title = {Dependence on the initial moment of the measure of stability and instability of the zero solution},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {80--90},
     year = {2024},
     volume = {34},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a5/}
}
TY  - JOUR
AU  - I. N. Sergeev
TI  - Dependence on the initial moment of the measure of stability and instability of the zero solution
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 80
EP  - 90
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a5/
LA  - ru
ID  - VUU_2024_34_1_a5
ER  - 
%0 Journal Article
%A I. N. Sergeev
%T Dependence on the initial moment of the measure of stability and instability of the zero solution
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 80-90
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a5/
%G ru
%F VUU_2024_34_1_a5
I. N. Sergeev. Dependence on the initial moment of the measure of stability and instability of the zero solution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 80-90. http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a5/

[1] Itô K., McKean H.P., Diffusion processes and their sample paths, Springer, Berlin, 1996 | DOI | MR | Zbl

[2] Khas’minskii R.Z., Stability of systems of differential equations under random perturbations of their parameters, Nauka, Moscow, 1969 | MR

[3] Venttsel’ A.D., Freidlin M.I., Fluctuations in dynamic systems under the influence of small random disturbances, Nauka, Moscow, 1979

[4] Sergeev I.N., “Definition and properties of measures of stability and instability of zero solution of a differential system”, Mathematical Notes, 113:6 (2023), 831–839 | DOI | DOI | MR | Zbl

[5] Sergeev I.N., “Determination of measures of stability and instability of the zero solution of a differential system”, Differentsial’nye Uravneniya, 59:6 (2023), 851–852 (in Russian)

[6] Sergeev I.N., “Properties of measures of stability and instability of the zero solution of a differential system”, Differentsial’nye Uravneniya, 59:11 (2023), 1577–1579 (in Russian)

[7] Sergeev I.N., “On Perron, Lyapunov and upper-limit stability properties of differential systems”, Trudy Seminara imeni I.G. Petrovskogo, 33 (2023), 353–423 (in Russian)

[8] Lyapunov A.M., General problem of motion stability, GITTL, Moscow–Leningrad, 1950 | MR

[9] Bylov B.F., Vinograd R.E., Grobman D.M., Nemytskii V.V., Theory of Lyapunov exponents and its application to problem of stability, Nauka, Moscow, 1966 | MR

[10] Demidovich B.P., Lectures on the mathematical theory of stability, Nauka, Moscow, 1967 | MR

[11] Sergeev I.N., “Definition and some properties of Perron stability”, Differential Equations, 55:5 (2019), 620–630 | DOI | DOI | MR | Zbl

[12] Perron O., “Die Ordnungszahlen linearer Differentialgleichungssysteme”, Mathematische Zeitschrift, 31:1 (1930), 748–766 | DOI | MR

[13] Izobov N.A., Lyapunov exponents and stability, Cambridge Scientific Publishers, 2012 | MR | MR

[14] Sergeev I.N., “Lyapunov, Perron and upper-limit stability properties of autonomous differential systems”, Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 56 (2020), 63–78 (in Russian) | DOI | Zbl

[15] Sergeev I.N., “Massive and almost massive properties of stability and instability of differential systems”, Differentsial’nye Uravneniya, 57:11 (2021), 1576–1578 (in Russian) | DOI

[16] Sergeev I.N., Differential equations. Lecture course, Moscow State University, Moscow, 2023