@article{VUU_2024_34_1_a2,
author = {I. V. Izmestyev and V. I. Ukhobotov and K. N. Kudryavtsev},
title = {Numerical solution of a control problem for a parabolic system with disturbances},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {33--47},
year = {2024},
volume = {34},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a2/}
}
TY - JOUR AU - I. V. Izmestyev AU - V. I. Ukhobotov AU - K. N. Kudryavtsev TI - Numerical solution of a control problem for a parabolic system with disturbances JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 33 EP - 47 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a2/ LA - en ID - VUU_2024_34_1_a2 ER -
%0 Journal Article %A I. V. Izmestyev %A V. I. Ukhobotov %A K. N. Kudryavtsev %T Numerical solution of a control problem for a parabolic system with disturbances %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 33-47 %V 34 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a2/ %G en %F VUU_2024_34_1_a2
I. V. Izmestyev; V. I. Ukhobotov; K. N. Kudryavtsev. Numerical solution of a control problem for a parabolic system with disturbances. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 33-47. http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a2/
[1] Osipov Iu.S., “Position control in parabolic systems”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 187–193 | DOI | MR
[2] Korotkii A.I., Osipov Iu.S., “Approximation in problems of position control of parabolic system”, Journal of Applied Mathematics and Mechanics, 42:4 (1978), 631–637 | DOI | MR
[3] Egorov A.I., Optimal control of thermal and diffusion processes, Nauka, Moscow, 1978
[4] Maksimov V.I., “On the reconstruction of an input disturbance in a reaction–diffusion system”, Computational Mathematics and Mathematical Physics, 63:6 (2023), 990–1000 | DOI | DOI | MR | Zbl
[5] Casas E., Yong Jiongmin, “Optimal control of a parabolic equation with memory”, ESAIM: Control, Optimisation and Calculus of Variations, 29 (2023), 23 | DOI | MR | Zbl
[6] Lohéac J., “Nonnegative boundary control of 1D linear heat equations”, Vietnam Journal of Mathematics, 49:3 (2021), 845–870 | DOI | MR | Zbl
[7] Barseghyan V., Solodusha S., “The problem of boundary control of the thermal process in a rod”, Mathematics, 11:13 (2023), 2881 | DOI
[8] Dai Jiguo, Ren Beibei, “UDE-based robust boundary control of heat equation with unknown input disturbance”, IFAC-PapersOnLine, 50:1 (2017), 11403–11408 | DOI
[9] Zheng Guojie, Li Jun, “Stabilization for the multi-dimensional heat equation with disturbance on the controller”, Automatica, 82 (2017), 319–323 | DOI | MR | Zbl
[10] Feng Hongyinping, Xu Cheng-Zhong, Yao Peng-Fei, “Observers and disturbance rejection control for a heat equation”, IEEE Transactions on Automatic Control, 65:11 (2020), 4957–4964 | DOI | MR
[11] Wang Shanshan, Qi Jie, Diagne Mamadou, “Adaptive boundary control of reaction–diffusion PDEs with unknown input delay”, Automatica, 134 (2021), 109909 | DOI | MR | Zbl
[12] Krasovskii N.N., Control of a dynamical system, Nauka, Moscow, 1985 | MR
[13] Osipov Yu.S., Okhezin S.P., “On the theory of differential games in parabolic systems”, Soviet Mathematics. Doklady, 17 (1976), 278–282 | MR | Zbl | Zbl
[14] Okhezin S.P., “Differential encounter–evasion game for a parabolic system under integral constraints on the player’s controls”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 194–201 | DOI | MR
[15] Pontryagin L.S., “Linear differential games of pursuit”, Mathematics of the USSR-Sbornik, 40:3 (1981), 285–303 | DOI | MR | Zbl | Zbl
[16] Grigorenko N.L., Kiselev Yu.N., Lagunova N.V., Silin D.B., Trin’ko N.G., “Solution methods for differential games”, Computional Mathematics and Modelling, 7:1 (1996), 101–116 | DOI | MR | Zbl
[17] Polovinkin E.S., Ivanov G.E., Balashov M.V., Konstantinov R.V., Khorev A.V., “An algorithm for the numerical solution of linear differential games”, Sbornik: Mathematics, 192:10 (2001), 1515–1542 | DOI | DOI | MR | Zbl
[18] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 https://www.springer.com/gp/book/9781461283188 | MR | MR | Zbl
[19] Ushakov V.N., Matviichuk A.R., Parshikov G.V., “A method for constructing a resolving control in an approach problem based on attraction to the solvability set”, Proceedings of the Steklov Institute of Mathematics, 284:suppl. 1 (2014), 135–144 | DOI | MR | MR
[20] Ushakov V.N., Ukhobotov V.I., Lipin A.E., “An addition to the definition of a stable bridge and an approximating system of sets in differential games”, Proceedings of the Steklov Institute of Mathematics, 304 (2019), 268–280 | DOI | DOI | MR | Zbl
[21] Ershov A.A., Ushakov A.V., Ushakov V.N., “Two game-theoretic problems of approach”, Sbornik: Mathematics, 212:9 (2021), 1228–1260 | DOI | DOI | MR | Zbl
[22] Kamneva L.V., Patsko V.S., “Construction of the solvability set in differential games with simple motions and nonconvex terminal set”, Proceedings of the Steklov Institute of Mathematics, 301:suppl. 1 (2018), 57–71 | DOI | DOI | MR
[23] Ukhobotov V.I., Izmest’ev I.V., “The problem of controlling the process of heating the rod in the presence of disturbance and uncertainty”, IFAC-PapersOnLine, 51:32 (2018), 739–742 | DOI
[24] Izmest’ev I.V., Ukhobotov V.I., “On one problem of controlling the heating of a rod system under uncertainty”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:4 (2022), 546–556 (in Russian) | DOI | MR | Zbl
[25] Ukhobotov V.I., Izmest’ev I.V., “A control problem for a rod heating process with unknown temperature at the right end and unknown density of the heat source”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:1 (2019), 297–305 (in Russian) | DOI | MR