Numerical solution of a control problem for a parabolic system with disturbances
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 33-47
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A controlled parabolic system that describes the heating of a given number of rods is considered. The density functions of the internal heat sources of the rods are not known exactly, and only the segments of their change are given. At the ends of the rods there are controlled heat sources and disturbances. The goal of the choice of control is to lead the vector of average temperatures of the rods at a fixed time to a given compact for any admissible functions of the density of internal heat sources and any admissible realizations of disturbances. After replacing variables, the problem of controlling a system of ordinary differential equations in the presence of uncertainty is obtained. Using a numerical method, a solvability set is constructed for this problem. Model calculations are carried out.
Keywords: control, disturbance, parabolic system
@article{VUU_2024_34_1_a2,
     author = {I. V. Izmestyev and V. I. Ukhobotov and K. N. Kudryavtsev},
     title = {Numerical solution of a control problem for a parabolic system with disturbances},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {33--47},
     year = {2024},
     volume = {34},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a2/}
}
TY  - JOUR
AU  - I. V. Izmestyev
AU  - V. I. Ukhobotov
AU  - K. N. Kudryavtsev
TI  - Numerical solution of a control problem for a parabolic system with disturbances
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2024
SP  - 33
EP  - 47
VL  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a2/
LA  - en
ID  - VUU_2024_34_1_a2
ER  - 
%0 Journal Article
%A I. V. Izmestyev
%A V. I. Ukhobotov
%A K. N. Kudryavtsev
%T Numerical solution of a control problem for a parabolic system with disturbances
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2024
%P 33-47
%V 34
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a2/
%G en
%F VUU_2024_34_1_a2
I. V. Izmestyev; V. I. Ukhobotov; K. N. Kudryavtsev. Numerical solution of a control problem for a parabolic system with disturbances. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 33-47. http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a2/

[1] Osipov Iu.S., “Position control in parabolic systems”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 187–193 | DOI | MR

[2] Korotkii A.I., Osipov Iu.S., “Approximation in problems of position control of parabolic system”, Journal of Applied Mathematics and Mechanics, 42:4 (1978), 631–637 | DOI | MR

[3] Egorov A.I., Optimal control of thermal and diffusion processes, Nauka, Moscow, 1978

[4] Maksimov V.I., “On the reconstruction of an input disturbance in a reaction–diffusion system”, Computational Mathematics and Mathematical Physics, 63:6 (2023), 990–1000 | DOI | DOI | MR | Zbl

[5] Casas E., Yong Jiongmin, “Optimal control of a parabolic equation with memory”, ESAIM: Control, Optimisation and Calculus of Variations, 29 (2023), 23 | DOI | MR | Zbl

[6] Lohéac J., “Nonnegative boundary control of 1D linear heat equations”, Vietnam Journal of Mathematics, 49:3 (2021), 845–870 | DOI | MR | Zbl

[7] Barseghyan V., Solodusha S., “The problem of boundary control of the thermal process in a rod”, Mathematics, 11:13 (2023), 2881 | DOI

[8] Dai Jiguo, Ren Beibei, “UDE-based robust boundary control of heat equation with unknown input disturbance”, IFAC-PapersOnLine, 50:1 (2017), 11403–11408 | DOI

[9] Zheng Guojie, Li Jun, “Stabilization for the multi-dimensional heat equation with disturbance on the controller”, Automatica, 82 (2017), 319–323 | DOI | MR | Zbl

[10] Feng Hongyinping, Xu Cheng-Zhong, Yao Peng-Fei, “Observers and disturbance rejection control for a heat equation”, IEEE Transactions on Automatic Control, 65:11 (2020), 4957–4964 | DOI | MR

[11] Wang Shanshan, Qi Jie, Diagne Mamadou, “Adaptive boundary control of reaction–diffusion PDEs with unknown input delay”, Automatica, 134 (2021), 109909 | DOI | MR | Zbl

[12] Krasovskii N.N., Control of a dynamical system, Nauka, Moscow, 1985 | MR

[13] Osipov Yu.S., Okhezin S.P., “On the theory of differential games in parabolic systems”, Soviet Mathematics. Doklady, 17 (1976), 278–282 | MR | Zbl | Zbl

[14] Okhezin S.P., “Differential encounter–evasion game for a parabolic system under integral constraints on the player’s controls”, Journal of Applied Mathematics and Mechanics, 41:2 (1977), 194–201 | DOI | MR

[15] Pontryagin L.S., “Linear differential games of pursuit”, Mathematics of the USSR-Sbornik, 40:3 (1981), 285–303 | DOI | MR | Zbl | Zbl

[16] Grigorenko N.L., Kiselev Yu.N., Lagunova N.V., Silin D.B., Trin’ko N.G., “Solution methods for differential games”, Computional Mathematics and Modelling, 7:1 (1996), 101–116 | DOI | MR | Zbl

[17] Polovinkin E.S., Ivanov G.E., Balashov M.V., Konstantinov R.V., Khorev A.V., “An algorithm for the numerical solution of linear differential games”, Sbornik: Mathematics, 192:10 (2001), 1515–1542 | DOI | DOI | MR | Zbl

[18] Krasovskii N.N., Subbotin A.I., Game-theoretical control problems, Springer, New York, 1988 https://www.springer.com/gp/book/9781461283188 | MR | MR | Zbl

[19] Ushakov V.N., Matviichuk A.R., Parshikov G.V., “A method for constructing a resolving control in an approach problem based on attraction to the solvability set”, Proceedings of the Steklov Institute of Mathematics, 284:suppl. 1 (2014), 135–144 | DOI | MR | MR

[20] Ushakov V.N., Ukhobotov V.I., Lipin A.E., “An addition to the definition of a stable bridge and an approximating system of sets in differential games”, Proceedings of the Steklov Institute of Mathematics, 304 (2019), 268–280 | DOI | DOI | MR | Zbl

[21] Ershov A.A., Ushakov A.V., Ushakov V.N., “Two game-theoretic problems of approach”, Sbornik: Mathematics, 212:9 (2021), 1228–1260 | DOI | DOI | MR | Zbl

[22] Kamneva L.V., Patsko V.S., “Construction of the solvability set in differential games with simple motions and nonconvex terminal set”, Proceedings of the Steklov Institute of Mathematics, 301:suppl. 1 (2018), 57–71 | DOI | DOI | MR

[23] Ukhobotov V.I., Izmest’ev I.V., “The problem of controlling the process of heating the rod in the presence of disturbance and uncertainty”, IFAC-PapersOnLine, 51:32 (2018), 739–742 | DOI

[24] Izmest’ev I.V., Ukhobotov V.I., “On one problem of controlling the heating of a rod system under uncertainty”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:4 (2022), 546–556 (in Russian) | DOI | MR | Zbl

[25] Ukhobotov V.I., Izmest’ev I.V., “A control problem for a rod heating process with unknown temperature at the right end and unknown density of the heat source”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 25:1 (2019), 297–305 (in Russian) | DOI | MR