@article{VUU_2024_34_1_a0,
author = {R. V. Brizitskii and N. N. Maksimova},
title = {On the uniqueness of a solution to the multiplicative control problem for the electron drift{\textendash}diffusion model},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {3--18},
year = {2024},
volume = {34},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a0/}
}
TY - JOUR AU - R. V. Brizitskii AU - N. N. Maksimova TI - On the uniqueness of a solution to the multiplicative control problem for the electron drift–diffusion model JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2024 SP - 3 EP - 18 VL - 34 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a0/ LA - ru ID - VUU_2024_34_1_a0 ER -
%0 Journal Article %A R. V. Brizitskii %A N. N. Maksimova %T On the uniqueness of a solution to the multiplicative control problem for the electron drift–diffusion model %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2024 %P 3-18 %V 34 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a0/ %G ru %F VUU_2024_34_1_a0
R. V. Brizitskii; N. N. Maksimova. On the uniqueness of a solution to the multiplicative control problem for the electron drift–diffusion model. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 34 (2024) no. 1, pp. 3-18. http://geodesic.mathdoc.fr/item/VUU_2024_34_1_a0/
[1] Chan D.S.H., Sim K.S., Phang J.C.H., Balk L.J., Uchikawa Y., Hasselbach F., Dinnis A.R., “A simulation model for electron irradiation induced specimen charging in a scanning electron microscope”, Scanning Microscopy, 7:3 (1993), 847–859 https://scholarbank.nus.edu.sg/handle/10635/61715
[2] Sessler G.M., Yang G.M., “Charge dynamics in electron-irradiated polymers”, Brazilian Journal of Physics, 29:2 (1999), 233–240 | DOI
[3] Suga H., Tadokoro H., Kotera M., “A simulation of electron beam induced charging-up of insulators”, Electron Microscopy, 1 (1998), 177–178
[4] Cazaux J., “About the mechanisms of charging in EPMA, SEM, and ESEM with their time evolution”, Microscopy and Microanalysis, 10:6 (2004), 670–684 | DOI
[5] Borisov S.S., Grachev E.A., Negulyaev N.N., Cheremukhin E.A., Zaitsev S.I., “Modeling the dielectric polarization during an electron beam exposure”, Applied Physics, 2004, no. 1, 118–124 (in Russian) https://applphys.orion-ir.ru/appl-04/04-1/04-1-22e.htm
[6] Kotera M., Yamaguchi K., Suga H., “Dynamic simulation of electron-beam-induced chargingup of insulators”, Japanese Journal of Applied Physics, 38:12S (1999), 7176–7179 | DOI
[7] Ohya K., Inai K., Kuwada H., Hauashi T., Saito M., “Dynamic simulation of secondary electron emission and charging up of an insulting material”, Surface and Coating Technology, 202:22–23 (2008), 5310–5313 | DOI
[8] Maslovskaya A.G., “Physical and mathematical modeling of the electron-beam-induced charging of ferroelectrics during the process of domain-structure switching”, Journal of Surface Investigation, 7:4 (2013), 680–684 | DOI
[9] Pavelchuk A.V., Maslovskaya A.G., “Approach to numerical implementation of the drift-diffusion model of field effects induced by a moving source”, Russian Physics Journal, 63:1 (2020), 105–112 | DOI
[10] Raftari B., Budko N.V., Vuik C., “Self-consistence drift-diffusion-reaction model for the electron beam interaction with dielectric samples”, Journal of Applied Physics, 118:20 (2015), 204101 | DOI
[11] Chezganov D.S., Kuznetsov D.K., Shur V.Ya., “Simulation of spatial distribution of electric field after electron beam irradiation of $MgO$-doped $LiNbO_3$ covered by resist layer”, Ferroelectrics, 496:1 (2016), 70–78 | DOI
[12] Maslovskaya A., Pavelchuk A., “Simulation of dynamic charging processes in ferroelectrics irradiated with SEM”, Ferroelectrics, 476:1 (2015), 1–11 | DOI
[13] Maslovskaya A., Sivunov A.V., “Simulation of electron injection and charging processes in ferroelectrics modified with the SEM-techniques”, Solid State Phenomena, 213 (2014), 119–124 | DOI
[14] Arat K.T., Klimpel T., Hagen C.W., “Model improvements to simulate charging in scanning electron microscope”, Journal of Micro/Nanolithography, MEMS, and MOEMS, 18:4 (2019), 044003 | DOI
[15] Brizitskii R.V., Maksimova N.N., Maslovskaya A.G., “Theoretical analysis and numerical implementation of a stationary diffusion-drift model of polar dielectric charging”, Computational Mathematics and Mathematical Physics, 62:10 (2022), 1680–1690 | DOI | DOI | MR | Zbl
[16] Maksimova N.N., Brizitskii R.V., “Inverse problem of recovering the electron diffusion coefficient”, Far Eastern Mathematical Journal, 22:2 (2022), 201–206 | DOI | MR | Zbl
[17] Brizitskii R.V., Maksimova N.N., Maslovskaya A.G., “Inverse problems for the diffusion–drift model of charging of an inhomogeneous polar dielectric”, Computational Mathematics and Mathematical Physics, 63:9 (2023), 1685–1699 | DOI | MR
[18] Brizitskii R.V., Saritskaya Zh.Y., “Optimization analysis of the inverse coefficient problem for the nonlinear convection-diffusion-reaction equation”, Journal of Inverse and Ill-Posed Problems, 26:6 (2018), 821–833 | DOI | MR | Zbl
[19] Brizitskii R.V., Saritskaya Zh.Yu., “Inverse coefficient problems for a non-linear convection-diffusion-reaction equation”, Izvestiya: Mathematics, 82:1 (2018), 14–30 | DOI | DOI | MR | Zbl
[20] Maslovskaya A.G., Moroz L.I., Chebotarev A.Yu., Kovtanyuk A.E., “Theoretical and numerical analysis of the Landau–Khalatnikov model of ferroelectric hysteresis”, Communications in Nonlinear Science and Numerical Simulation, 93 (2021), 105524 | DOI | MR | Zbl
[21] Chebotarev A.Yu., Grenkin G.V., Kovtanyuk A.E., Botkin N.D., Hoffmann K.-H., “Diffusion approximation of the radiative-conductive heat transfer model with Fresnel matching conditions”, Communications in Nonlinear Science and Numerical Simulation, 57 (2018), 290–298 | DOI | MR | Zbl
[22] Chebotarev A.Yu., Grenkin G.V., Kovtanyuk A.E., Botkin N.D., Hoffmann K.-H., “Inverse problem with finite overdetermination for steady-state equations of radiative heat exchange”, Journal of Mathematical Analysis and Applications, 460:2 (2018), 737–744 | DOI | MR | Zbl
[23] Chebotarev A.Yu., Kovtanyuk A.E., Botkin N.D., “Problem of radiation heat exchange with boundary conditions of the Cauchy type”, Communications in Nonlinear Science and Numerical Simulation, 75 (2019), 262–269 | DOI | MR | Zbl
[24] Baranovskii E.S., “Optimal boundary control of the Boussinesq approximation for polymeric fluids”, Journal of Optimization Theory and Applications, 189:2 (2021), 623–645 | DOI | MR | Zbl
[25] Brizitskii R.V., Saritskaia Zh.Yu., “Multiplicative control problems for nonlinear reaction–diffusion–convection model”, Journal of Dynamical and Control Systems, 27:2 (2021), 379–402 | DOI | MR | Zbl
[26] Alekseev G.V., Optimization in stationary problems of heat and mass transfer and magnetohydrodynamics, Nauchnyi Mir, Moscow, 2010
[27] Buffa A., Some numerical and theoretical problems in computational electromagnetism, University of Milano, 2000 | MR
[28] Fursikov A.V., Optimal control of distributed systems. Theory and applications, Nauchnaya Kniga, Novosibirsk, 1999