Dynamics of two vortices on a finite flat cylinder
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 642-658

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, a model that describes the motion of point vortices in an ideal incompressible fluid on a finite flat cylinder is obtained. The case of two vortices is considered in detail. It is shown that the equations of motion of vortices can be represented in Hamiltonian form and have an additional first integral. A procedure of reduction to a fixed level of the first integral is proposed. For the reduced system, phase portraits are constructed, fixed points and singularities of the system are indicated.
Keywords: point vortices, ideal fluid, fixed points, singularities
Mots-clés : phase portrait
@article{VUU_2023_33_4_a6,
     author = {E. M. Artemova},
     title = {Dynamics of two vortices on a finite flat cylinder},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {642--658},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a6/}
}
TY  - JOUR
AU  - E. M. Artemova
TI  - Dynamics of two vortices on a finite flat cylinder
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 642
EP  - 658
VL  - 33
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a6/
LA  - ru
ID  - VUU_2023_33_4_a6
ER  - 
%0 Journal Article
%A E. M. Artemova
%T Dynamics of two vortices on a finite flat cylinder
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 642-658
%V 33
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a6/
%G ru
%F VUU_2023_33_4_a6
E. M. Artemova. Dynamics of two vortices on a finite flat cylinder. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 642-658. http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a6/