Initial-boundary value problem for the equations of dynamics of a rotating viscous stratified fluid
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 625-641 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of small motions of a viscous stratified fluid partially filling a container that uniformly rotates around an axis co-directed by gravity. The problem is studied on the basis of an approach related to the application of the so-called operator matrix theory. To this end, we introduce Hilbert spaces and some their subspaces, as well as auxiliary boundary value problems. The original initial-boundary value problem is reduced to the Cauchy problem for a first-order differential equation in some Hilbert space. After a detailed study of the properties of the operator coefficients corresponding to the resulting system of equations, we prove a theorem on the solvability of the Cauchy problem. On this basis, we find sufficient conditions for the existence of a solution of the original initial-boundary value problem describing the evolution of the hydro-system.
Keywords: stratification effect in viscous fluids, differential equation in Hilbert space, Cauchy problem
@article{VUU_2023_33_4_a5,
     author = {D. O. Tsvetkov},
     title = {Initial-boundary value problem for the equations of dynamics of a rotating viscous stratified fluid},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {625--641},
     year = {2023},
     volume = {33},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a5/}
}
TY  - JOUR
AU  - D. O. Tsvetkov
TI  - Initial-boundary value problem for the equations of dynamics of a rotating viscous stratified fluid
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 625
EP  - 641
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a5/
LA  - ru
ID  - VUU_2023_33_4_a5
ER  - 
%0 Journal Article
%A D. O. Tsvetkov
%T Initial-boundary value problem for the equations of dynamics of a rotating viscous stratified fluid
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 625-641
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a5/
%G ru
%F VUU_2023_33_4_a5
D. O. Tsvetkov. Initial-boundary value problem for the equations of dynamics of a rotating viscous stratified fluid. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 625-641. http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a5/

[1] Gabov S.A., Sveshnikov A.G., Problems of dynamics of stratified fluids, Nauka, Moscow, 1986 | MR

[2] Gabov S. A., Sveshnikov A.G., Linear problems in the theory of nonstationary internal waves, Nauka, Moscow, 1990 | MR

[3] Kholodova S.E., “Wave motions in a compressible stratified rotating fluid”, Computational Mathematics and Mathematical Physics, 47:12 (2007), 2014–2022 | DOI | MR

[4] Peregudin S.I., Kholodova S.E., Modeling and analysis of flows and waves in liquid and granular media, Saint Petersburg University, Saint Petersburg, 2009

[5] Demidenko G.V., Upsenskii S.V., Partial differential equations and systems not solvable with respect to the highest-order derivative, CRC Press, 2003 | DOI | MR | MR

[6] Shchipitsyn V.D., “Vibrations of a nonaxisymmetric cylinder in a cavity filled with liquid and performing rotational oscillations”, Technical Physics Letters, 46:8 (2020), 771–774 | DOI | DOI

[7] Derendyaev N.V., “A study of stability of rotation for rotary systems with liquid”, Automation and Remote Control, 81:8 (2020), 1450–1460 | DOI | DOI | MR | Zbl

[8] Amaouche M., Abderrahmane H.A., “An exact eigenfrequency equation for the oscillations of a viscous fluid contained in an open and rectangular vessel with a flexible wall”, European Journal of Mechanics – B/Fluids, 70 (2018), 1–5 | DOI | MR | Zbl

[9] Bazarkina O.A., Taktarov N.G., “Rotary vibrations of a porous spherical shell with an impermeable core in a viscous liquid”, University Proceedings. Volga Region. Physical and Mathematical Sciences, 2020, no. 1(53), 73–87 (in Russian) | DOI

[10] Kravtsov A.V., “Asymptotic solution of the problem of forced oscillation of viscous stratified fluid”, Computational Mathematics and Mathematical Physics, 37:12 (1997), 1452–1459 (in Russian) | MR | Zbl

[11] Zakora D.A., “On properties of root elements in the problem on small motions of viscous relaxing fluid”, Journal of Mathematical Physics, Analysis, Geometry, 13:4 (2017), 402–413 | DOI | MR | Zbl

[12] Zakora D.A., “Oldroyd model for compressible fluids”, Journal of Mathematical Sciences, 239:5 (2019), 582–607 | DOI | MR | Zbl

[13] Zakora D.A., “Spectral properties of the operator in the problem of oscillations in a mixture of viscous compressible fluids”, Differential Equations, 59:4 (2023), 473–490 | DOI | MR

[14] Forduk K.V., “Oscillations of a system of rigid bodies partially filled with viscous fluids under the action of an elastic damping device”, The Bulletin of Irkutsk State University. Series Mathematics, 42 (2022), 103–120 (in Russian) | DOI | MR | Zbl

[15] Tsvetkov D.O., “Oscillations of a stratified liquid partially covered with ice (general case)”, Mathematical Notes, 107:1 (2020), 160–172 | DOI | DOI | MR | Zbl

[16] Tsvetkov D.O., “Oscillations of a liquid partially covered with ice”, Lobachevskii Journal of Mathematics, 42:5 (2021), 1078–1093 | DOI | MR | Zbl

[17] Tsvetkov D.O., “Crumbled ice on the surface of a multilayered fluid”, Sibirskie Èlektronnye Matematicheskie Izvestiya, 17 (2020), 777–801 | DOI | MR | Zbl

[18] Tsvetkov D.O., “On an initial-boundary value problem which arises in the dynamics of a viscous stratified fluid”, Russian Mathematics, 64:8 (2020), 50–63 | DOI | DOI | MR | Zbl

[19] Tsvetkov D.O., “The problem of normal oscillations of a viscous stratified fluid with an elastic membrane”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 31:2 (2021), 311–330 (in Russian) | DOI | MR | Zbl

[20] Kopachevsky N.D., Krein S.G., Operator approach to linear problems of hydrodynamics, v. 1, Self-adjoint problems for an ideal fluid, Birkhäuser, Basel, 2001 | DOI | MR | Zbl

[21] Kopachevsky N.D., Azizov T.Ya., Zakora D.A., Tsvetkov D.O., Operator methods in applied mathematics, v. 2, Basic courses, Arial, Simferopol, 2022

[22] Krein S.G., Linear differential equations in Banach spaces, Birkhäuser, Boston, 1982 | DOI | MR

[23] Goldstein J.A., Semigroups of linear operators and applications, Oxford University Press, Oxford and New York, 1985 | MR | Zbl

[24] Kopachevsky N.D., “Abstract Green formulas for triples of Hilbert spaces and sesquilinear forms”, Journal of Mathematical Sciences, 225:2 (2017), 226–264 | DOI | MR