Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 581-600 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For the reduced canonical system of integro-differential equations of viscoelasticity, direct and inverse problems of determining the velocity field of elastic waves and the relaxation matrix are considered. The problems are replaced by a closed system of Volterra integral equations of the second kind with respect to the Fourier transform in the variables $x_{1}$ and $x_{2}$ for the solution of the direct problem and unknowns of the inverse problem. Further, the method of contraction mappings in the space of continuous functions with a weighted norm is applied to this system. Thus, we prove global existence and uniqueness theorems for solutions of the problems.
Keywords: viscoelasticity, resolvent, inverse problem, hyperbolic system
Mots-clés : Fourier transform
@article{VUU_2023_33_4_a3,
     author = {D. K. Durdiev and Z. R. Bozorov and A. A. Boltayev},
     title = {Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {581--600},
     year = {2023},
     volume = {33},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a3/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - Z. R. Bozorov
AU  - A. A. Boltayev
TI  - Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 581
EP  - 600
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a3/
LA  - en
ID  - VUU_2023_33_4_a3
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A Z. R. Bozorov
%A A. A. Boltayev
%T Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 581-600
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a3/
%G en
%F VUU_2023_33_4_a3
D. K. Durdiev; Z. R. Bozorov; A. A. Boltayev. Inverse problem for the system of viscoelasticity in anisotropic media with tetragonal form of elasticity modulus. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 581-600. http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a3/

[1] Volterra V., Theory of functionals and of integral and integro-differential equations, Dover Publications, New York, 1959 | MR | Zbl

[2] Mura T., Micromechanics of defects in solids, Springer, Dordrecht, 1987 | DOI

[3] Landau L.D., Lifshitz E.M., Course of theoretical physics, v. 8, Electrodynamics of continuous media, Pergamon Press, New York, 1984 | MR

[4] Durdiev D.K., Totieva Zh.D., “The problem of determining the one-dimensional matrix kernel of the system of viscoelasticity equations”, Mathematical Methods in the Applied Sciences, 41:17 (2018), 8019–8032 | DOI | MR | Zbl

[5] Romanov V.G., “On the determination of the coefficients in the viscoelasticity equations”, Siberian Mathematical Journal, 55:3 (2014), 503–510 | DOI | MR | Zbl

[6] Durdiev D.K., Rahmonov A.A., “A 2D kernel determination problem in a visco-elastic porous medium with a weakly horizontally inhomogeneity”, Mathematical Methods in the Applied Sciences, 43:15 (2020), 8776–8796 | DOI | MR | Zbl

[7] Durdiev D.K., Totieva Zh.D., “The problem of determining the one-dimensional kernel of viscoelasticity equation with a source of explosive type”, Journal of Inverse and Ill-posed Problems, 28:1 (2020), 43–52 | DOI | MR | Zbl

[8] Klibanov M.V., Romanov V.G., “Two reconstruction procedures for a 3D phaseless inverse scattering problem for the generalized Helmholtz equation”, Inverse Problems, 32:1 (2016), 015005 | DOI | MR | Zbl

[9] Klibanov M.V., Romanov V.G., “Uniqueness of a 3-D coefficient inverse scattering problem without the phase information”, Inverse Problems, 33:9 (2017), 095007 | DOI | MR | Zbl

[10] Romanov V.G., “Phaseless inverse problems for Schrödinger, Helmholtz, and Maxwell equations”, Computational Mathematics and Mathematical Physics, 60:6 (2020), 1045–1062 | DOI | DOI | MR | Zbl

[11] Durdiev D.K., Safarov J.Sh., “The problem of determining the memory of an environment with weak horizontal heterogeneity”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:3 (2022), 383–402 (in Russian) | DOI | MR | Zbl

[12] Blagoveshchenskii A.S., Fedorenko D.A., “The inverse problem for an acoustic equation in a weakly horizontally inhomogeneous medium”, Journal of Mathematical Sciences, 155:3 (2008), 379–389 | DOI | MR | Zbl

[13] Durdiev D.K., Nuriddinov Zh.Z., “On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 30:4 (2020), 572–584 | DOI | MR | Zbl

[14] Jiang Daijun, Liu Yikan, Yamamoto Masahiro, “Inverse source problem for the hyperbolic equation with a time-dependent principal part”, Journal of Differential Equations, 262:1 (2017), 653–681 | DOI | MR | Zbl

[15] Denisov A.M., Shirkova E.Yu., “Inverse problem for a quasilinear hyperbolic equation with a nonlocal boundary condition containing a delay argument”, Differential Equations, 49:9 (2013), 1053–1061 | DOI | MR | Zbl

[16] Denisov A.M., “Inverse problem for a quasilinear system of partial differential equations with a nonlocal boundary condition containing a retarded argument”, Differential Equations, 51:9 (2015), 1126–1136 | DOI | DOI | MR | Zbl

[17] Cardoulis L., “An inverse problem for a hyperbolic system in a bounded domain”, Comptes Rendus. Mathématique, 361 (2023), 653–665 | DOI | MR | Zbl

[18] Cristofol M., Gaitan P., Niinimäki K., Poisson O., “Inverse problem for a coupled parabolic system with discontinuous conductivities: One-dimensional case”, Inverse Problems and Imaging, 7:1 (2013), 159–182 | DOI | MR | Zbl

[19] Ismailov M.I., Tekin I., “Inverse coefficient problems for a first order hyperbolic system”, Applied Numerical Mathematics, 106 (2016), 98–115 | DOI | MR | Zbl

[20] Floridia G., Takase H., “Inverse problems for first-order hyperbolic equations with time-dependent coefficients”, Journal of Differential Equations, 305 (2021), 45–71 | DOI | MR | Zbl

[21] Durdiev D.K., Turdiev Kh.Kh., “Inverse problem for a first-order hyperbolic system with memory”, Differential Equations, 56:12 (2020), 1634–1643 | DOI | DOI | MR | Zbl

[22] Durdiev D.K., Turdiev Kh.Kh., “The problem of finding the kernels in the system of integro-differential Maxwell’s equations”, Journal of Applied and Industrial Mathematics, 15:2 (2021), 190–211 | DOI | DOI | MR | Zbl

[23] Boltaev A.A., Durdiev D.K., “Inverse problem for viscoelastic system in a vertically layered medium”, Vladikavkazskii Matematicheskii Zhurnal, 24:4 (2022), 30–47 | DOI | MR

[24] Godounov S., Équations de la physique mathématique, Mir, Moscow, 1973 | MR

[25] Romanov V.G., Inverse problems of mathematical physics, VNU Science Press, Utrecht, 1987 | MR | MR

[26] Kolmogorov A.N., Fomin S.V., Elements of the theory of functions and functional analysis, Dover Publications, New York, 1999 | MR | MR

[27] Galin L.A., Contact problems of the theory of elasticity and viscoelasticity, Nauka, Moscow, 1980 | MR

[28] Dieulesaint E., Royer D., Elastic waves in solids. Applications to signal processing, John Wiley, New York, 1980 | MR