Products of spaces and the convergence of sequences
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 563-570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By the Hewitt–Marczewski–Pondiczery theorem, the Tychonoff product of $2^\omega$ separable spaces is separable. We continue to explore the problem of the existence in the Tychonoff product $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ of $2^\omega$ separable spaces a dense countable subset, which does not contain non-trivial convergent sequences. We say that a sequence $\lambda=\{x_n\colon n\in\omega\}$ is simple, if, for every $x_n\in\lambda$, a set $\{n'\in\omega\colon x_{n'}=x_n\}$ is finite. We prove that in the product of separable spaces $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, such that $Z_\alpha$ $(\alpha\in 2^\omega)$ contains a simple nonconvergent sequence, there is a countable dense set $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, which does not contain non-trivial convergent in $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ sequences.
Keywords: Tychonoff product, dense set, convergent sequence, independent matrix
@article{VUU_2023_33_4_a1,
     author = {A. A. Gryzlov and R. A. Golovastov and E. S. Bastrykov},
     title = {Products of spaces and the convergence of sequences},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {563--570},
     year = {2023},
     volume = {33},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a1/}
}
TY  - JOUR
AU  - A. A. Gryzlov
AU  - R. A. Golovastov
AU  - E. S. Bastrykov
TI  - Products of spaces and the convergence of sequences
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 563
EP  - 570
VL  - 33
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a1/
LA  - en
ID  - VUU_2023_33_4_a1
ER  - 
%0 Journal Article
%A A. A. Gryzlov
%A R. A. Golovastov
%A E. S. Bastrykov
%T Products of spaces and the convergence of sequences
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 563-570
%V 33
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a1/
%G en
%F VUU_2023_33_4_a1
A. A. Gryzlov; R. A. Golovastov; E. S. Bastrykov. Products of spaces and the convergence of sequences. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 563-570. http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a1/

[1] Aleksandrov P.S., Introduction to set theory and general topology, Mir, Moscow, 1977

[2] Arkhangel’skii A.V., Ponomarev V.I., Fundamentals of general topology in tasks and exercises, Nauka, Moscow, 1974 | MR

[3] Engelking R., General topology, PWN, Warsaw, 1977 | MR | Zbl

[4] Gryzlov A.A., “On dense subsets of Tychonoff products of $T_1$-spaces”, Topology and its Applications, 248 (2018), 164–175 | DOI | MR | Zbl

[5] Gryzlov A.A., “Sequences and dense sets”, Topology and its Applications, 271 (2020), 106988 | DOI | MR | Zbl

[6] Gryzlov A.A., “Some dense sets of the Tychonoff cube $I^c$”, Topology and its Applications, 321 (2022), 108258 | DOI | MR | Zbl

[7] Hrušak M., van Mill J., Ramos-Garcia U.A., Shelah S., “Countably compact groups without non-trivial convergent sequences”, Transactions of the American Mathematical Society, 374 (2021), 1277–1296 | DOI | MR | Zbl

[8] Priestley W.H., “A sequentially closed countable dense subset of $I^I$”, Proceedings of the American Mathematical Society, 24:2 (1970), 270–271 | DOI | MR | Zbl

[9] Simon P., “Divergent sequences in compact Hausdorff spaces”, Topology (Colloquia Mathematica Societatis Janos Bolyai: Vol 23), North-Holland Publishing Co., Amsterdam–New York, 1980, 1087–1094 | MR

[10] van Mill J., “A remark on the Rudin–Keisler order of ultrafilters”, Houston Journal of Mathematics, 9:1 (1983), 125–129 https://staff.fnwi.uva.nl/j.vanmill//papers/papers1983/keisler.pdf | MR | Zbl

[11] Kunen K., “Weak $p$-points in $N^*$”, Topology (Colloquia Mathematica Societatis Janos Bolyai: Vol 23), North-Holland Publishing Co., Amsterdam–New York, 1980, 741–749