Products of spaces and the convergence of sequences
    
    
  
  
  
      
      
      
        
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 563-570
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			By the Hewitt–Marczewski–Pondiczery theorem, the Tychonoff product of $2^\omega$ separable spaces is separable. We continue to explore the problem of the existence in the Tychonoff product $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ of $2^\omega$ separable spaces a dense countable subset, which does not contain non-trivial convergent sequences. We say that a sequence $\lambda=\{x_n\colon n\in\omega\}$ is simple, if, for every $x_n\in\lambda$, a set $\{n'\in\omega\colon x_{n'}=x_n\}$ is finite. We prove that in the product of separable spaces $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, such that $Z_\alpha$ $(\alpha\in 2^\omega)$ contains a simple nonconvergent sequence, there is a countable dense set $Q\subseteq\prod\limits_{\alpha\in 2^\omega}Z_\alpha$, which does not contain non-trivial convergent in $\prod\limits_{\alpha\in 2^\omega}Z_\alpha$ sequences.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Tychonoff product, dense set, convergent sequence, independent matrix
                    
                    
                    
                  
                
                
                @article{VUU_2023_33_4_a1,
     author = {A. A. Gryzlov and R. A. Golovastov and E. S. Bastrykov},
     title = {Products of spaces and the convergence of sequences},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {563--570},
     publisher = {mathdoc},
     volume = {33},
     number = {4},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a1/}
}
                      
                      
                    TY - JOUR AU - A. A. Gryzlov AU - R. A. Golovastov AU - E. S. Bastrykov TI - Products of spaces and the convergence of sequences JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 563 EP - 570 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a1/ LA - en ID - VUU_2023_33_4_a1 ER -
%0 Journal Article %A A. A. Gryzlov %A R. A. Golovastov %A E. S. Bastrykov %T Products of spaces and the convergence of sequences %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 563-570 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a1/ %G en %F VUU_2023_33_4_a1
A. A. Gryzlov; R. A. Golovastov; E. S. Bastrykov. Products of spaces and the convergence of sequences. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 4, pp. 563-570. http://geodesic.mathdoc.fr/item/VUU_2023_33_4_a1/
