Generation of adaptive hexahedral meshes from surface and voxel geometric models
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 534-547
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present a modification of the developed hexahedral mesh generator from voxel data which allows constructing adaptive computational meshes. Construction of the refinement field is based on geometry features of the described model when it has a large thickness difference in dimensions or small and thin areas. A universal criterion for cells refinement is proposed which gives the possibility of its use in the case of volumetric (voxel) and surface (STL) representations of the model geometry. The refinement templates that provide conformal mesh closure are described. The results of the algorithm performance are given.
Keywords: hexahedral mesh generator, mesh refinement, CAD model, STL-geometry.
Mots-clés : volume data
@article{VUU_2023_33_3_a9,
     author = {A. S. Karavaev and S. P. Kopysov},
     title = {Generation of adaptive hexahedral meshes from surface and voxel geometric models},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {534--547},
     year = {2023},
     volume = {33},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a9/}
}
TY  - JOUR
AU  - A. S. Karavaev
AU  - S. P. Kopysov
TI  - Generation of adaptive hexahedral meshes from surface and voxel geometric models
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 534
EP  - 547
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a9/
LA  - ru
ID  - VUU_2023_33_3_a9
ER  - 
%0 Journal Article
%A A. S. Karavaev
%A S. P. Kopysov
%T Generation of adaptive hexahedral meshes from surface and voxel geometric models
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 534-547
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a9/
%G ru
%F VUU_2023_33_3_a9
A. S. Karavaev; S. P. Kopysov. Generation of adaptive hexahedral meshes from surface and voxel geometric models. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 534-547. http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a9/

[1] Ray N., Sokolov D., Reberol M., Ledoux F., Lévy B., “Hex-dominant meshing: Mind the gap!”, Computer-Aided Design, 102 (2018), 94–103 | DOI

[2] Pellerin J., Johnen A., Verhetsel K., Remacle J.-F., “Identifying combinations of tetrahedra into hexahedra: A vertex based strategy”, Computer-Aided Design, 105 (2018), 1–10 | DOI | MR

[3] Ruiz-Gironés E., Roca X., Sarrate J., “The receding front method applied to hexahedral mesh generation of exterior domains”, Engineering with Computers, 28:4 (2012), 391–408 | DOI

[4] Bo Ren, Cheng Wang, “Mapping-based 3D hexahedral finite element mesh generation method”, Wuhan University Journal of Natural Sciences, 12:2 (2007), 255–259 | DOI | Zbl

[5] Livesu M., Pietroni N., Puppo E., Sheffer A., Cignoni P., “LoopyCuts: practical feature-preserving block decomposition for strongly hex-dominant meshing”, ACM Transactions on Graphics, 39:4 (2020), 121, 121:1–121:17 | DOI

[6] Takayama K., “Dual sheet meshing: An interactive approach to robust hexahedralization”, Computer Graphics Forum, 38:2 (2019), 37–48 | DOI

[7] Ledoux F., Weill J.-C., “An extension of the reliable whisker weaving algorithm”, Proceedings of the 16th International Meshing Roundtable, Springer, Berlin–Heidelberg, 2008, 215–232 | DOI | Zbl

[8] Schneiders R., Bünten R., “Automatic generation of hexahedral finite element meshes”, Computer Aided Geometric Design, 12:7 (1995), 693–707 | DOI | MR | Zbl

[9] Lili Huang, Guoqun Zhao, Zhonglei Wang, Xiangwei Zhang, “Adaptive hexahedral mesh generation and regeneration using an improved grid-based method”, Advances in Engineering Software, 102 (2016), 49–70 | DOI

[10] Zhang Yongjie, Bajaj C., “Adaptive and quality quadrilateral/hexahedral meshing from volumetric data”, Computer Methods in Applied Mechanics and Engineering, 195:9–12 (2006), 942–960 | DOI | Zbl

[11] Gao Xifeng, Shen Hanxiao, Panozzo D., “Feature preserving octree-based hexahedral meshing”, Computer Graphics Forum, 38:5 (2019), 135–149 | DOI

[12] Karavaev A.S., Kopysov S.P., “A modification of the hexahedral mesh generator based on voxel geometry representation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 30:3 (2020), 468–479 (in Russian) | DOI | MR | Zbl

[13] Karavaev A.S., Kopysov S.P., “Hexahedral mesh generation using voxel field recovery”, Numerical Geometry, Grid Generation and Scientific Computing, Springer, Cham, 2020, 295–305 | DOI | MR

[14] Ito Yasushi, Shih A.M., Soni B.K., “Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement templates”, International Journal for Numerical Methods in Engineering, 77:13 (2009), 1809–1833 | DOI | MR | Zbl

[15] Tchon Ko-Foa, Khachan M., Guibault F., Camarero R., “Three-dimensional anisotropic geometric metrics based on local domain curvature and thickness”, Computer-Aided Design, 37:2 (2005), 173–187 | DOI

[16] Qian Jin, Zhang Yongjie, “Automatic unstructured all-hexahedral mesh generation from B-Reps for non-manifold CAD assemblies”, Engineering with Computers, 28:4 (2012), 345–359 | DOI

[17] Sun Lu, Zhao Guoqun, Ma Xinwu, “Adaptive generation and local refinement methods of three-dimensional hexahedral element mesh”, Finite Elements in Analysis and Design, 50 (2012), 184–200 | DOI | MR

[18] Owen S.J., Shih R.M., “A template-based approach for parallel hexahedral two-refinement”, Procedia Engineering, 124 (2015), 31–43 | DOI