@article{VUU_2023_33_3_a8,
author = {G. U. Urazboev and I. I. Baltaeva and O. B. Ismoilov},
title = {Integration of the negative order {Korteweg{\textendash}de~Vries} equation by the inverse scattering method},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {523--533},
year = {2023},
volume = {33},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a8/}
}
TY - JOUR AU - G. U. Urazboev AU - I. I. Baltaeva AU - O. B. Ismoilov TI - Integration of the negative order Korteweg–de Vries equation by the inverse scattering method JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 523 EP - 533 VL - 33 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a8/ LA - ru ID - VUU_2023_33_3_a8 ER -
%0 Journal Article %A G. U. Urazboev %A I. I. Baltaeva %A O. B. Ismoilov %T Integration of the negative order Korteweg–de Vries equation by the inverse scattering method %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 523-533 %V 33 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a8/ %G ru %F VUU_2023_33_3_a8
G. U. Urazboev; I. I. Baltaeva; O. B. Ismoilov. Integration of the negative order Korteweg–de Vries equation by the inverse scattering method. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 523-533. http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a8/
[1] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Method for solving the Korteweg–de Vries equation”, Physical Review Letters, 19:19 (1967), 1095–1097 | DOI | MR
[2] Lax P.D., “Integrals of nonlinear equations of evolution and solitary waves”, Communications on Pure and Applied Mathematics, 21:5 (1968), 467–490 | DOI | MR | Zbl
[3] Levitan B.M., Inverse Sturm–Liouville problems, VNU Science Press, Utrecht, 1987 | MR | MR | Zbl
[4] Andreev V.A., Burova M.V., “Lower Korteweg–de Vries equations and supersymmetric structure of the sine-Gordon and Liouville equations”, Theoretical and Mathematical Physics, 85:3 (1990), 1275–1283 | DOI | MR | Zbl
[5] Verosky J.M., “Negative powers of Olver recursion operators”, Journal of Mathematical Physics, 32:7 (1991), 1733–1736 | DOI | MR | Zbl
[6] Lou Sen-yue, “Symmetries of the KdV equation and four hierarchies of the integrodifferential KdV equations”, Journal of Mathematical Physics, 35:5 (1994), 2390–2396 | DOI | MR | Zbl
[7] Qiao Zhijun, Li Jibin, “Negative-order KdV equation with both solitons and kink wave solutions”, EPL (Europhysics Letters), 94:5 (2011), 50003 | DOI | MR
[8] Qiao Zhijun, Fan Engui, “Negative-order Korteweg–de Vries equations”, Physical Review E, 86:1 (2012), 016601 | DOI
[9] Rodriguez M., Li Jing, Qiao Zhijun, “Negative order KdV equation with no solitary traveling waves”, Mathematics, 10:1 (2022), 48 | DOI
[10] Hu Heng-Chun, Liu Fei-Yan, “Nonlocal symmetries and similarity reductions for Korteweg–de Vries–-negative-order Korteweg–de Vries equation”, Chinese Physics B, 29:4 (2020), 040201 | DOI
[11] Qiao Zhijun, Strampp W., “Negative order MKdV hierarchy and a new integrable Neumann-like system”, Physica A: Statistical Mechanics and its Applications, 313:3–4 (2002), 365–380 | DOI | MR | Zbl
[12] Wazwaz Abdul-Majid, Xu Gui-Qiong, “Negative-order modified KdV equations: multiple soliton and multiple singular soliton solutions”, Mathematical Methods in the Applied Sciences, 39:4 (2016), 661–667 | DOI | MR | Zbl
[13] Wazwaz Abdul-Majid, “Negative-order integrable modified KdV equations of higher orders”, Nonlinear Dynamics, 93:3 (2018), 1371–1376 | DOI | MR | Zbl
[14] Beals R., Novikov R.G., “New differential equations in the mKdV hierarchy”, Comptes Rendus de l'Académie des Sciences. Série I, 314:13 (1992), 991–996 | MR | Zbl
[15] Wazwaz Abdul-Majid, “Construction of a hierarchy of negative-order integrable Burgers equations of higher orders”, Mathematical Methods in the Applied Sciences, 42:5 (2019), 1553–1560 | DOI | MR | Zbl
[16] Yuan Shengyang, Xu Jian, “On a Riemann–Hilbert problem for the negative-order KdV equation”, Applied Mathematics Letters, 132 (2022), 108106 | DOI | MR | Zbl
[17] Wazwaz Abdul-Majid, “Multiple complex soliton solutions for integrable negative-order KdV and integrable negative-order modified KdV equations”, Applied Mathematics Letters, 88 (2019), 1–7 | DOI | MR | Zbl
[18] Urazboev G.U., Hasanov M.M., “Integration of the negative order Korteweg–de Vries equation with a self-consistent source in the class of periodic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:2 (2022), 228–239 (in Russian) | DOI | MR | Zbl
[19] Khasanov A.B., Urazboev G.U., “Integration of the sine-Gordon equation with a self-consistent source of the integral type in the case of multiple eigenvalues”, Russian Mathematics, 53:3 (2009), 45–55 | DOI | MR | MR | Zbl
[20] Urazboev G.U., Baltaeva I.I., “Integration of Camassa–Holm equation with a self-consistent source of integral type”, Ufa Mathematical Journal, 14:1 (2022), 77–86 | MR
[21] Yakhshimuratov A.B., Matyokubov M.M., “Integration of a loaded Korteweg–de Vries equation in a class of periodic functions”, Russian Mathematics, 60:2 (2016), 72–76 | DOI | MR | Zbl
[22] Urazboev G.U., Babadjanova A.K., Zhuaspayev T.A., “Integration of the periodic Harry Dym equation with a source”, Wave Motion, 113 (2022), 102970 | DOI | MR
[23] Urazboev G.U., Babadjanova A.K., Saparbaeva D.R., “Integration of the Harry Dym equation with an integral type source”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 31:2 (2021), 285–295 | DOI | MR | Zbl
[24] Urazboev G.U., Reyimberganov A.A., Babadjanova A.K., “Integration of the matrix nonlinear Schrödinger equation with a source”, The Bulletin of Irkutsk State University. Series Mathematics, 37 (2021), 63–76 (in Russian) | DOI | MR | Zbl