On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 483-496
Voir la notice de l'article provenant de la source Math-Net.Ru
This article considers continuous functions defined on the boundary of a bounded domain $D$ in $\mathbb C^n$, $n>1$, and having a generalized boundary Morera property. The question of the existence of a holomorphic continuation of such functions into the domain $D$ for some sufficient sets $\Gamma$ of complex lines intersecting the germ of the generating manifold lying inside the domain is investigated.
Keywords:
holomorphic continuation, a multidimensional boundary condition of Morera.
@article{VUU_2023_33_3_a6,
author = {A. M. Kytmanov and S. G. Myslivets},
title = {On some sets sufficient for holomorphic continuation of functions with generalized boundary {Morera} property},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {483--496},
publisher = {mathdoc},
volume = {33},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a6/}
}
TY - JOUR AU - A. M. Kytmanov AU - S. G. Myslivets TI - On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 483 EP - 496 VL - 33 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a6/ LA - ru ID - VUU_2023_33_3_a6 ER -
%0 Journal Article %A A. M. Kytmanov %A S. G. Myslivets %T On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 483-496 %V 33 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a6/ %G ru %F VUU_2023_33_3_a6
A. M. Kytmanov; S. G. Myslivets. On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 483-496. http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a6/