On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 483-496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article considers continuous functions defined on the boundary of a bounded domain $D$ in $\mathbb C^n$, $n>1$, and having a generalized boundary Morera property. The question of the existence of a holomorphic continuation of such functions into the domain $D$ for some sufficient sets $\Gamma$ of complex lines intersecting the germ of the generating manifold lying inside the domain is investigated.
Keywords: holomorphic continuation, a multidimensional boundary condition of Morera.
@article{VUU_2023_33_3_a6,
     author = {A. M. Kytmanov and S. G. Myslivets},
     title = {On some sets sufficient for holomorphic continuation of functions with generalized boundary {Morera} property},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {483--496},
     year = {2023},
     volume = {33},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a6/}
}
TY  - JOUR
AU  - A. M. Kytmanov
AU  - S. G. Myslivets
TI  - On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 483
EP  - 496
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a6/
LA  - ru
ID  - VUU_2023_33_3_a6
ER  - 
%0 Journal Article
%A A. M. Kytmanov
%A S. G. Myslivets
%T On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 483-496
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a6/
%G ru
%F VUU_2023_33_3_a6
A. M. Kytmanov; S. G. Myslivets. On some sets sufficient for holomorphic continuation of functions with generalized boundary Morera property. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 483-496. http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a6/

[1] Grinberg E.L., “A boundary analogue of Morera’s theorem in the unit ball of $\mathbb{C}^n$”, Proceedings of the American Mathematical Society, 102:1 (1988), 114–116 | DOI | MR | Zbl

[2] Agranovskii M.L., Val’skii R.E., “Maximality of invariant algebras of functions”, Siberian Mathematical Journal, 12:1 (1971), 1–7 | DOI | MR | MR

[3] Globevnik J., Stout E.L., “Boundary Morera theorems for holomorphic functions of several complex variables”, Duke Mathematical Journal, 64:3 (1991), 571–615 | DOI | MR | Zbl

[4] Globevnik J., “A boundary Morera theorem”, Journal of Geometric Analysis, 3:3 (1993), 269–277 | DOI | MR | Zbl

[5] Govekar-Leban D., “A Morera theorem for the boundary values of holomorphic functions in the unit ball in $\mathbb C^n$”, Rocky Mountain Journal of Mathematics, 33:1 (2003), 147–157 https://www.jstor.org/stable/44238916 | DOI | MR | Zbl

[6] Kytmanov A.M., Myslivets S.G., “On family of complex straight lines sufficient for existence of holomorphic continuation of continuous functions on boundary of domain”, Ufa Mathematical Journal, 12:3 (2020), 44–49 | DOI | MR | Zbl

[7] Kytmanov A.M., Myslivets S.G., “On families of complex lines sufficient for holomorphic extension”, Mathematical Notes, 83:4 (2008), 500–505 | DOI | DOI | MR | Zbl

[8] Kytmanov A.M., Myslivets S.G., “On functions with the boundary Morera property in domains with piecewise-smooth boundary”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 31:1 (2021), 50–58 | DOI | MR | Zbl

[9] Kytmanov A.M., Myslivets S.G., Multidimensional integral representations, Springer, Cham, 2015 | DOI | MR | Zbl

[10] Myslivets S.G., “On the multidimensional boundary analogue of the Morera theorem”, Journal of Siberian Federal University. Mathematics and Physics, 15:1 (2022), 29–45 | DOI | MR

[11] Baouendi M.S., Ebenfelt P., Rothschild L.P., Real submanifolds in complex space and their mappings, Princeton University Press, Princeton, 1999 https://www.jstor.org/stable/j.ctt1bpmb1r | MR | Zbl

[12] Kytmanov A.M., The Bochner–Martinelli integral and its applications, Birkhäuser, Basel, 1995 | DOI | MR | MR | Zbl

[13] Shlapunov A.A., Tarkhanov N.N., “Bases with double orthogonalyty in the Cauchy problem for systems with injective symbols”, Proceedings of the London Mathematical Society, s3-71:1 (1995), 1–52 | DOI | MR | Zbl

[14] Carmona J.J., Paramonov P.V., Fedorovskii K.Yu., “On uniform approximation by polyanalytic polynomials and the Dirichlet problem for bianalytic functions”, Sbornik: Mathematics, 193:10 (2002), 1469–1492 | DOI | DOI | MR | Zbl

[15] Belov Yu., Borichev A., Fedorovskiy K., “Nevanlinna domains with large boundaries”, Journal of Functional Analysis, 277:8 (2019), 2617–2643 | DOI | MR | Zbl