Inverse problems for the beam vibration equation with involution
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 452-466

Voir la notice de l'article provenant de la source Math-Net.Ru

This article considers inverse problems for a fourth-order hyperbolic equation with involution. The existence and uniqueness of a solution of the studied inverse problems is established by the method of separation of variables. To apply the method of separation of variables, we prove the Riesz basis property of the eigenfunctions for a fourth-order differential operator with involution in the space ${{L}_{2}}(-1,1)$. For proving theorems on the existence and uniqueness of a solution, we widely use the Bessel inequality for the coefficients of expansions into a Fourier series in the space ${{L}_{2}}(-1,1)$. A significant dependence of the existence of a solution on the equation coefficient $\alpha$ is shown. In each of the cases $\alpha -1$, $\alpha >1$, $-1\alpha1$ representations of solutions in the form of Fourier series in terms of eigenfunctions of boundary value problems for a fourth-order equation with involution are written out.
Keywords: differential equations with involution, inverse problem, eigenvalue, eigenfunction, Fourier method.
@article{VUU_2023_33_3_a4,
     author = {A. B. Imanbetova and A. A. Sarsenbi and B. N. Seilbekov},
     title = {Inverse problems for the beam vibration equation with involution},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {452--466},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a4/}
}
TY  - JOUR
AU  - A. B. Imanbetova
AU  - A. A. Sarsenbi
AU  - B. N. Seilbekov
TI  - Inverse problems for the beam vibration equation with involution
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 452
EP  - 466
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a4/
LA  - en
ID  - VUU_2023_33_3_a4
ER  - 
%0 Journal Article
%A A. B. Imanbetova
%A A. A. Sarsenbi
%A B. N. Seilbekov
%T Inverse problems for the beam vibration equation with involution
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 452-466
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a4/
%G en
%F VUU_2023_33_3_a4
A. B. Imanbetova; A. A. Sarsenbi; B. N. Seilbekov. Inverse problems for the beam vibration equation with involution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 452-466. http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a4/