@article{VUU_2023_33_3_a4,
author = {A. B. Imanbetova and A. A. Sarsenbi and B. N. Seilbekov},
title = {Inverse problems for the beam vibration equation with involution},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {452--466},
year = {2023},
volume = {33},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a4/}
}
TY - JOUR AU - A. B. Imanbetova AU - A. A. Sarsenbi AU - B. N. Seilbekov TI - Inverse problems for the beam vibration equation with involution JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 452 EP - 466 VL - 33 IS - 3 UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a4/ LA - en ID - VUU_2023_33_3_a4 ER -
%0 Journal Article %A A. B. Imanbetova %A A. A. Sarsenbi %A B. N. Seilbekov %T Inverse problems for the beam vibration equation with involution %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 452-466 %V 33 %N 3 %U http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a4/ %G en %F VUU_2023_33_3_a4
A. B. Imanbetova; A. A. Sarsenbi; B. N. Seilbekov. Inverse problems for the beam vibration equation with involution. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 452-466. http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a4/
[1] Whitham G.B., Linear and nonlinear waves, John Wiley and Sons, New York, 1999 | DOI | MR
[2] Sabitov K.B., “Inverse problems of determining the right-hand side and the initial conditions for the beam vibration equation”, Differential Equations, 56:6 (2020), 761–774 | DOI | DOI | MR | Zbl
[3] Imanbetova A., Sarsenbi A., Seilbekov B., “Inverse problem for a fourth-order hyperbolic equation with a complex-valued coefficient”, Mathematics, 11:15 (2023), 3432 | DOI
[4] Durdiev D.K., Jumayev J.J., Atoev D.D., “Kernel determination problem in an integro-differential equation of parabolic type with nonlocal condition”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 33:1 (2023), 90–102 | DOI | MR
[5] Durdiev D.K., Nuriddinov Zh.Z., “On investigation of the inverse problem for a parabolic integro-differential equation with a variable coefficient of thermal conductivity”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 30:4 (2020), 572–584 | DOI | MR | Zbl
[6] Wiener J., Generalized solutions of functional differential equations, World Scientific, Hackensack, 1993 | Zbl
[7] Przeworska–Rolewicz D., Equations with trransformed argument: an algebraic approach, Elsevier, Amsterdam, 1973 | MR
[8] Cabada A., Tojo F.A.F., Differential equations with involutions, Atlantis Press, 2015 | DOI | MR | Zbl
[9] Kirane M., Sadybekov M., Sarsenbi A.A., “On an inverse problem of reconstructing a subdiffusion process from nonlocal data”, Mathematical Methods in the Applied Sciences, 42:6 (2019), 2043–2052 | DOI | MR | Zbl
[10] Kirane M., Al-Salti N., “Inverse problems for a nonlocal wave equation with an involution perturbation”, Journal of Nonlinear Sciences and Applications, 9:3 (2016), 1243–1251 | DOI | MR | Zbl
[11] Ruzhansky M., Tokmagambetov N., Torebek B.T., “Inverse source problems for positive operators. I: Hypoelliptic diffusion and subdiffusion equations”, Journal of Inverse and Ill-posed Problems, 27:6 (2019), 891–911 | DOI | MR | Zbl
[12] Ahmad B., Alsaedi A., Kirane M., Tapdigoglu R.G., “An inverse problem for space and time fractional evolution equations with an involution perturbation”, Quaestiones Mathematicae, 40:2 (2017), 151–160 | DOI | MR | Zbl
[13] Mussirepova E., Sarsenbi A.A., Sarsenbi A.M., “Solvability of mixed problems for the wave equation with reflection of the argument”, Mathematical Methods in the Applied Sciences, 45:17 (2022), 11262–11271 | DOI | MR
[14] Mussirepova E., Sarsenbi A.A., Sarsenbi A.M., “The inverse problem for the heat equation with reflection of the argument and with a complex coefficient”, Boundary Value Problems, 2022:1 (2022), 99 | DOI | MR | Zbl
[15] Al-Salti N., Kerbal S., Kirane M., “Initial-boundary value problems for a time-fractional differential equation with involution perturbation”, Mathematical Modelling of Natural Phenomena, 14:3 (2019), 312–327 | DOI | MR
[16] Ashyralyev A., Erdogan A.S., Sarsenbi A., “A note on the parabolic identification problem with involution and Dirichlet condition”, Bulletin of the Karaganda University-Mathematics, 99:3 (2020), 130–139 | DOI
[17] Karachik V.V., Sarsenbi A.M., Turmetov B.K., “On the solvability of the main boundary value problems for a nonlocal Poisson equation”, Turkish Journal of Mathematics, 43:3 (2019), 1604–1625 | DOI | MR | Zbl
[18] Ilyas A., Malik S.A., Saif S., “Inverse problems for a multi-term time fractional evolution equation with an involution”, Inverse Problems in Science and Engineering, 29:13 (2021), 3377–3405 | DOI | MR
[19] Yarka U., Fedushko S., Veselý P., “The Dirichlet problem for the perturbed elliptic equation”, Mathematics, 8:12 (2020), 2108 | DOI
[20] Sarsenbi A.A., “A solvability conditions of mixed problems for equations of parabolic type with involution”, Bulletin of the Karaganda University-Mathematics, 92:4 (2018), 87–93 | DOI
[21] Turmetov B.Kh., Karachik V.V., “On solvability of the Dirichlet and Neumann boundary value problems for the Poisson equation with multiple involution”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 31:4 (2021), 651–667 (in Russian) | DOI | MR | Zbl
[22] Kozhanov A.I., Bzheumikhova O.I., “Elliptic and parabolic equations with involution and degeneration at higher derivatives”, Mathematics, 10:18 (2022), 3325 | DOI
[23] Burlutskaya M.Sh., Khromov A.P., “Fourier method in an initial-boundary value problem for a first-order partial differential equation with involution”, Computational Mathematics and Mathematical Physics, 51:12 (2011), 2102–2114 | DOI | MR | Zbl
[24] Ashyralyev A., Ashyralyyev A., Abdalmohammed B., “On the hyperbolic type differential equation with time involution”, Bulletin of the Karaganda University-Mathematics, 109:1 (2023), 38–47 | DOI
[25] Kirane M., Sarsenbi A.A., “Solvability of mixed problems for a fourth-order equation with involution and fractional derivative”, Fractal and Fractional, 7:2 (2023), 131 | DOI
[26] Sarsenbi A.A., Turmetov B.Kh., “Basis property of a system of eigenfunctions of a second-order differential operator with involution”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 29:2 (2019), 183–196 (in Russian) | DOI | MR | Zbl
[27] Moiseev E.I., “On the basis property of systems of sines and cosines”, Soviet Mathematics. Doklady, 29 (1984), 296–300 | MR | Zbl | Zbl
[28] Sarsenbi A.A., Sarsenbi A.M., “On eigenfunctions of the boundary value problems for second order differential equations with involution”, Symmetry, 13:10 (2021), 1972 | DOI | MR
[29] Imanbaev N.S., “On nonlocal perturbation of the problem on eigenvalues of differentiation operator on a segment”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 31:2 (2021), 186–193 | DOI | MR | Zbl
[30] Imanbaev N.S., Kanguzhin B.E., Kalimbetov B.T., “On zeros of the characteristic determinant of the spectral problem for a third-order differential operator on a segment with nonlocal boundary conditions”, Advances in Difference Equations, 2013:1 (2013), 110 | DOI | MR | Zbl