On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 387-401 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.
Keywords: step function, regulated function, Jordan measurability, Riemann integrability.
@article{VUU_2023_33_3_a0,
     author = {V. N. Baranov and V. I. Rodionov and A. G. Rodionova},
     title = {On {Banach} spaces of regulated functions of several variables. {An} analogue of the {Riemann} integral},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {387--401},
     year = {2023},
     volume = {33},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a0/}
}
TY  - JOUR
AU  - V. N. Baranov
AU  - V. I. Rodionov
AU  - A. G. Rodionova
TI  - On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 387
EP  - 401
VL  - 33
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a0/
LA  - ru
ID  - VUU_2023_33_3_a0
ER  - 
%0 Journal Article
%A V. N. Baranov
%A V. I. Rodionov
%A A. G. Rodionova
%T On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 387-401
%V 33
%N 3
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a0/
%G ru
%F VUU_2023_33_3_a0
V. N. Baranov; V. I. Rodionov; A. G. Rodionova. On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 387-401. http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a0/

[1] Schwartz L., Analyse mathématique, v. 1, Hermann, Paris, 1967 | MR | Zbl | Zbl

[2] Dieudonné J., Foundations of modern analysis, Academic Press, New York–London, 1960 | MR | Zbl

[3] Tvrdý M., “Regulated functions and the Perron–Stieltjes integral”, C̆asopis Pro Pĕstování Matematiky, 114:2 (1989), 187–209 | DOI | MR | Zbl

[4] Rodionov V.I., “On family of subspaces of the space of regulated functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 2009, no. 4, 7–24 (in Russian) | DOI

[5] Hönig Ch.S., Volterra Stieltjes-integral equations: functional analytic methods, linear constraints, North-Holland, Amsterdam, 1975 | MR | Zbl

[6] Dudek S., Olszowy L., “Measures of noncompactness and superposition operator in the space of regulated functions on an unbounded interval”, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 114:4 (2020), 168 | DOI | MR

[7] Dudek S., Olszowy L., “Measures of noncompactness in the space of regulated functions on an unbounded interval”, Annals of Functional Analysis, 13:4 (2022), 63 | DOI | MR

[8] Baranov V.N., Rodionov V.I., “On nonlinear metric spaces of functions of bounded variation”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp’yuternye Nauki, 32:3 (2022), 341–360 (in Russian) | DOI | MR | Zbl

[9] Hanung U.M., Tvrdý M., “On the relationships between Stieltjes type integrals of Young, Dushnik and Kurzweil”, Mathematica Bohemica, 144:4 (2019), 357–372 | DOI | MR | Zbl

[10] Federson M., Mesquita J.G., Slavík A., “Basic results for functional differential and dynamic equations involving impulses”, Mathematische Nachrichten, 286:2–3 (2013), 181–204 | DOI | MR | Zbl

[11] Monteiro G.A., Slavík A., “Extremal solutions of measure differential equations”, Journal of Mathematical Analysis and Applications, 444:1 (2016), 568–597 | DOI | MR | Zbl

[12] Monteiro G.A., Hanung U.M., Tvrdý M., “Bounded convergence theorem for abstract Kurzweil–Stieltjes integral”, Monatshefte für Mathematik, 180:3 (2016), 409–434 | DOI | MR | Zbl

[13] Di Piazza L., Marraffa V., Satco B., “Closure properties for integral problems driven by regulated functions via convergence results”, Journal of Mathematical Analysis and Applications, 466:1 (2018), 690–710 | DOI | MR | Zbl

[14] Banaś J., Zając T., “On a measure of noncompactness in the space of regulated functions and its applications”, Advances in Nonlinear Analysis, 8:1 (2019), 1099–1110 | DOI | MR | Zbl

[15] Olszowy L., “Measures of noncompactness in the space of regulated functions”, Journal of Mathematical Analysis and Applications, 476:2 (2019), 860–874 | DOI | MR | Zbl

[16] Olszowy L., Zając T., “Some inequalities and superposition operator in the space of regulated functions”, Advances in Nonlinear Analysis, 9:1 (2020), 1278–1290 | DOI | MR | Zbl

[17] Cichoń M., Cichoń K., Satco B., “Measure differential inclusions through selection principles in the space of regulated functions”, Mediterranean Journal of Mathematics, 15:4 (2018), 148 | DOI | MR | Zbl

[18] Estrada R., “The set of singularities of regulated functions in several variables”, Collectanea Mathematica, 63:3 (2012), 351–359 | DOI | MR | Zbl

[19] Yang Y., Estrada R., “The dual of the space of regulated functions in several variables”, Sarajevo Journal of Mathematics, 9(22):2 (2013), 197–216 | DOI | MR | Zbl

[20] Kudryavtsev L.D., A course in mathematical analysis, v. 2, Vysshaya Shkola, Moscow, 1988 | Zbl