On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 387-401

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper introduces the concept of a regulated function of several variables $f\colon X\to\mathbb R$, where $X\subseteq \mathbb R^n$. The definition is based on the concept of a special partition of the set $X$ and the concept of oscillation of the function $f$ on the elements of the partition. It is shown that every function defined and continuous on the closure $X$ of the open bounded set $X_0\subseteq\mathbb R^n$, is regulated (belongs to the space $\langle{\rm G(}X),\|\cdot\ |\rangle$). The completeness of the space ${\rm G}(X)$ in the $\sup$-norm $\|\cdot\|$ is proved. This is the closure of the space of step functions. In the second part of the work, the space ${\rm G}^J(X)$ is defined and studied, which differs from the space ${\rm G}(X)$ in that its definition uses $J$-partitions instead of partitions, whose elements are Jordan measurable open sets. The properties of the space ${\rm G}(X)$ listed above carry over to the space ${\rm G}^J(X)$. In the final part of the paper, the notion of $J$-integrability of functions of several variables is defined. It is proved that if $X$ is a Jordan measurable closure of an open bounded set $X_0\subseteq\mathbb R^n$, and the function $f\colon X\to\mathbb R$ is Riemann integrable, then it is $J$-integrable. In this case, the values of the integrals coincide. All functions $f\in{\rm G}^J(X)$ are $J$-integrable.
Keywords: step function, regulated function, Jordan measurability, Riemann integrability.
@article{VUU_2023_33_3_a0,
     author = {V. N. Baranov and V. I. Rodionov and A. G. Rodionova},
     title = {On {Banach} spaces of regulated functions of several variables. {An} analogue of the {Riemann} integral},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {387--401},
     publisher = {mathdoc},
     volume = {33},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a0/}
}
TY  - JOUR
AU  - V. N. Baranov
AU  - V. I. Rodionov
AU  - A. G. Rodionova
TI  - On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 387
EP  - 401
VL  - 33
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a0/
LA  - ru
ID  - VUU_2023_33_3_a0
ER  - 
%0 Journal Article
%A V. N. Baranov
%A V. I. Rodionov
%A A. G. Rodionova
%T On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 387-401
%V 33
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a0/
%G ru
%F VUU_2023_33_3_a0
V. N. Baranov; V. I. Rodionov; A. G. Rodionova. On Banach spaces of regulated functions of several variables. An analogue of the Riemann integral. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 3, pp. 387-401. http://geodesic.mathdoc.fr/item/VUU_2023_33_3_a0/