On a group pursuit problem on time scales
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 130-140
Voir la notice de l'article provenant de la source Math-Net.Ru
In a finite-dimensional Euclidean space $\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\mathbb{T}$ by equations of the form
\begin{gather*}
z_i^{\Delta} = a z_i + u_i - v,
\end{gather*}
where $z_i^{\Delta}$ is the $\Delta$-derivative of the functions $z_i$ on the time scale $\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\mathbb T = \{ \tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.
Keywords:
differential game, group pursuit, pursuer, evader
Mots-clés : time scale.
Mots-clés : time scale.
@article{VUU_2023_33_1_a8,
author = {E. S. Mozhegova},
title = {On a group pursuit problem on time scales},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {130--140},
publisher = {mathdoc},
volume = {33},
number = {1},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a8/}
}
TY - JOUR AU - E. S. Mozhegova TI - On a group pursuit problem on time scales JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 130 EP - 140 VL - 33 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a8/ LA - ru ID - VUU_2023_33_1_a8 ER -
E. S. Mozhegova. On a group pursuit problem on time scales. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 130-140. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a8/