On a group pursuit problem on time scales
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 130-140 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a finite-dimensional Euclidean space $\mathbb R^k$, we consider a linear problem of pursuit of one evader by a group of pursuers, which is described on the given time scale $\mathbb{T}$ by equations of the form \begin{gather*} z_i^{\Delta} = a z_i + u_i - v, \end{gather*} where $z_i^{\Delta}$ is the $\Delta$-derivative of the functions $z_i$ on the time scale $\mathbb{T}$, $a$ is an arbitrary number not equal to zero. The set of admissible controls for each participant is a unit ball centered at the origin, the terminal sets are given convex compact sets in $\mathbb R^k$. The pursuers act according to the counter-strategies based on the information about the initial positions and the evader control history. In terms of initial positions and game parameters, a sufficient capture condition has been obtained. For the case of setting the time scale in the form $\mathbb T = \{ \tau k \mid k \in \mathbb Z,\ \tau \in \mathbb R,\ \tau >0\}$ sufficient pursuit and evasion problems solvability conditions have been found. In the study, in both cases, the resolving function method is used as basic one.
Keywords: differential game, group pursuit, pursuer, evader
Mots-clés : time scale.
@article{VUU_2023_33_1_a8,
     author = {E. S. Mozhegova},
     title = {On a group pursuit problem on time scales},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {130--140},
     year = {2023},
     volume = {33},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a8/}
}
TY  - JOUR
AU  - E. S. Mozhegova
TI  - On a group pursuit problem on time scales
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 130
EP  - 140
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a8/
LA  - ru
ID  - VUU_2023_33_1_a8
ER  - 
%0 Journal Article
%A E. S. Mozhegova
%T On a group pursuit problem on time scales
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 130-140
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a8/
%G ru
%F VUU_2023_33_1_a8
E. S. Mozhegova. On a group pursuit problem on time scales. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 130-140. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a8/

[1] Krasovskii N.N., Subbotin A.I., Positional differential games, Nauka, Moscow, 1974 | MR

[2] Subbotin A.I., Chentsov A.G., Guarantee optimization in control problems, Nauka, Moscow, 1981 | MR

[3] Pontryagin L.S., Selected scientific works, v. 2, Nauka, Moscow, 1988

[4] Chikrii A.A., Conflict-controlled processes, Springer, Dordrecht, 1997 | DOI | MR

[5] Grigorenko N.L., Mathematical methods for controlling of several dynamic processes, Moscow State University, Moscow, 1990

[6] Blagodatskikh A.I., Petrov N.N., Conflict interaction of managed objects groups, Udmurt State University, Izhevsk, 2009

[7] Rilwan J., Kumam P., Ibragimov G., Badakaya A.J., Ahmed I., “A differential game problem of many pursuers and one evader in the Hilbert space $\ell_2$”, Differential Equations and Dynamical Systems, 2020 | DOI

[8] Samatov B.T., “The pursuit-evasion problem under integral-geometric constraints on pursuer controls”, Automation and Remote Control, 74:7 (2013), 1072–1081 | DOI | MR | Zbl

[9] Samatov B.T., “The $\Pi$-strategy in a differential game with linear control constraints”, Journal of Applied Mathematics and Mechanics, 78:3 (2014), 258–263 | DOI | MR | Zbl

[10] Mamadaliev N., “Linear differential pursuit games with integral constraints in the presence of delay”, Mathematical Notes, 91:5 (2012), 704–713 | DOI | DOI | MR | Zbl

[11] Matychyn I.I., Onyshchenko V.V., “Differential games of fractional order with impulse effect”, Journal of Automation and Information Sciences, 47:4 (2015), 43–53 | DOI

[12] Chikrii A.A., Chikrii G.Ts., “Matrix resolving functions in game problems of dynamics”, Proceedings of the Steklov Institute of Mathematics, 291:1 (2015), 56–65 | DOI | MR

[13] Nakonechnyi A.G., Kapustyan E.A., Chikriy A.A., “Control of impulse systems in conflict situation”, Journal of Automation and Information Sciences, 51:9 (2019), 1–11 | DOI

[14] Aulbach B., Hilger S., “Linear dynamic processes with inhomogeneous time scale”, Nonlinear Dynamics and Quantum Dynamical Systems: Contributions to the International Seminar ISAM-90, held in Gaussing (GDR) (De Gruyter, March 19-23), 1990, 9–20 | DOI | MR | Zbl

[15] Hilger S., “Analysis on measure chains — a unified approach to continuous and discrete calculus”, Results in Mathematics, 18:1–2 (1990), 18–56 | DOI | MR | Zbl

[16] Benchohra M., Henderson J., Ntouyas S., Impulsive differential equations and inclusions, Hindawi Publishing Corporation, 2006 | DOI | MR | Zbl

[17] Bohner M., Peterson A., Advances in dynamic equations on time scales, Birkhäuser, Boston, 2003 | DOI | MR | Zbl

[18] Martins N., Torres D.F.M., “Necessary conditions for linear noncooperative $N$-player delta differential games on time scales”, Discussiones Mathematicae. Differential Inclusions, Control and Optimization, 31:1 (2011), 23–37 | DOI | MR | Zbl

[19] Petrov N.N., “The problem of simple group pursuit with phase constraints in time scales”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 30:2 (2020), 249–258 (in Russian) | DOI | MR | Zbl

[20] Petrov N.N., “On a problem of pursuing a group of evaders in time scales”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27:3 (2021), 163–171 (in Russian) | DOI | MR

[21] Petrov N.N., Mozhegova E.S., “On a simple pursuit problem on time scales of two coordinated evaders”, Chelyabinskii Fiziko-Matematicheskii Zhurnal, 7:3 (2022), 277–286 (in Russian) | DOI | MR | Zbl

[22] Petrov N.N., “Multiple capture of a given number of evaders in the problem of simple pursuit with phase restrictions on timescales”, Dynamic Games and Applications, 12:2 (2022), 632–642 | DOI | MR | Zbl

[23] Guseinov G.Sh., “Integration on time scales”, Journal of Mathematical Analysis and Applications, 285:1 (2003), 107–127 | DOI | MR | Zbl

[24] Cabada A., Vivero D.R., “Expression of the Lebesgue $\Delta$-integral on time scales as a usual Lebesgue integral; application to the calculus of $\Delta$-antiderivatives”, Mathematical and Computer Modelling, 43:1–2 (2006), 194–207 | DOI | MR | Zbl

[25] Pshenichnyi B.N., Rappoport I.S., “A problem of group pursuit”, Cybernetics, 15:6 (1979), 939–940 | DOI | MR | Zbl | Zbl

[26] Bobrovski D., Introduction to the theory of dynamical systems with discrete time, Institute of Computer Research, Moscow-Izhevsk, 2006 | MR