Mots-clés : Steklov spectral condition, Lamé operator, eigenelements.
@article{VUU_2023_33_1_a3,
author = {D. B. Davletov and O. B. Davletov and R. R. Davletova and A. A. Ershov},
title = {On eigenelements of a two-dimensional {Steklov-type} boundary value problem for the {Lam\'e} operator},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {54--65},
year = {2023},
volume = {33},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a3/}
}
TY - JOUR AU - D. B. Davletov AU - O. B. Davletov AU - R. R. Davletova AU - A. A. Ershov TI - On eigenelements of a two-dimensional Steklov-type boundary value problem for the Lamé operator JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 54 EP - 65 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a3/ LA - ru ID - VUU_2023_33_1_a3 ER -
%0 Journal Article %A D. B. Davletov %A O. B. Davletov %A R. R. Davletova %A A. A. Ershov %T On eigenelements of a two-dimensional Steklov-type boundary value problem for the Lamé operator %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 54-65 %V 33 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a3/ %G ru %F VUU_2023_33_1_a3
D. B. Davletov; O. B. Davletov; R. R. Davletova; A. A. Ershov. On eigenelements of a two-dimensional Steklov-type boundary value problem for the Lamé operator. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 54-65. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a3/
[1] Lamé G., “Mémoire sur les surfaces isothermes dans les corps solides homogènes en équilibre de température”, Journal de Mathématiques Pures et Appliquées. Serie 1, 2 (1837), 147–183 (in French) http://www.numdam.org/item/JMPA_1837_1_2__147_0
[2] Morgenstern D., “Herleitung der Plattentheorie aus der dreidimensionalen Elastizitätstheorie”, Archive for Rational Mechanics and Analysis, 4:1 (1959), 145–152 | DOI | MR | Zbl
[3] Shoikhet B.A., “On asymptotically exact equations of thin plates of complex structure”, Journal of Applied Mathematics and Mechanics, 37:5 (1973), 867–877 | DOI | MR
[4] Ciarlet P.G., Kesavan S., “Two-dimensional approximations of three-dimensional eigenvalue problems in plate theory”, Computer Methods in Applied Mechanics and Engineering, 26:2 (1981), 145–172 | DOI | MR | Zbl
[5] Destuynder Ph., “Comparaison entre les modèles tridimensionnels et bidimensionnels de plaques en élasticité”, RAIRO. Analyse numérique, 15:4 (1981), 331–369 (in French) | DOI | MR | Zbl
[6] Zorin I.S., Nazarov S.A., “Edge effect in the bending of a thin three-dimensional plate”, Journal of Applied Mathematics and Mechanics, 53:4 (1989), 500–507 | DOI | MR | Zbl
[7] Destuynder Ph., Gruais I., “Error estimation for the linear three-dimensional elastic plate model”, Asymptotic Methods for Elastic Structures, Proceedings of the International Conference (Lisbon, Portugal, October 4-8, 1993), De Gruyter, Berlin-New York, 1995, 75–88 | DOI | MR | Zbl
[8] Nazarov S.A., “On the asymptotics of the spectrum of a thin plate problem of elasticity”, Siberian Mathematical Journal, 41:4 (2000), 744–759 | DOI | MR | MR | Zbl
[9] Borcea J., Shapiro B., “Root asymptotics of spectral polynomials for the Lamé operator”, Communications in Mathematical Physics, 282:2 (2007), 323–337 | DOI | MR
[10] Haese-Hill W.A., Hallnäs M.A., Veselov A.P., “On the spectra of real and complex Lamé operators”, Symmetry Integrability and Geometry: Methods and Applications, 13 (2017), 049 | DOI | MR | Zbl
[11] Volkmer H., “Eigenvalue problems for Lamé's differential equation”, Symmetry Integrability and Geometry: Methods and Applications, 14 (2018), 131 | DOI | MR | Zbl
[12] Chen Zhijie, Fu Erjuan, Lin Chang-Shou, “Spectrum of the Lamé operator and application, I: Deformation along $\mathrm{Re}\,\tau=\frac12$”, Advances in Mathematics, 383 (2021), 107699 | DOI | MR | Zbl
[13] Chen Zhijie, Lin Chang-Shou, “Spectrum of the Lamé Operator and Application, II: When an endpoint is a cusp”, Communications in Mathematical Physics, 378:1 (2020), 335–368 | DOI | MR | Zbl
[14] Nadeem Anjam Yasir, Ali Akhtar, “On singularities of solution of the elasticity system in a bounded domain with angular corner points”, Mathematical Methods in the Applied Sciences, 45:5 (2022), 3124–3143 | DOI | MR
[15] Nazarov S.A., “Spectral properties of a thin layer with a doubly periodic family of thinning regions”, Theoretical and Mathematical Physics, 174:3 (2013), 343–359 | DOI | DOI | MR | Zbl
[16] Algazin S.D., “Computational experiments in the problem on eigenvalues for the Laplace operator in the polygonal domain”, Mathematical Models and Computer Simulations, 5:6 (2013), 520–526 | DOI | MR | Zbl
[17] Gryshchuk S., Lanza de Cristoforis M., “Simple eigenvalues for the Steklov problem in a domain with a small hole. A functional analytic approach”, Mathematical Methods in the Applied Sciences, 37:12 (2014), 1755–1771 | DOI | MR | Zbl
[18] Allaoui M., “Continuous spectrum of Steklov nonhomogeneous elliptic problem”, Opuscula Mathematica, 35:6 (2015), 853–866 | DOI | MR | Zbl
[19] Chiadò Piat V., Nazarov S.A., “Mixed boundary value problems in singularly perturbed two-dimensional domains with the Steklov spectral condition”, Journal of Mathematical Sciences, 251:5 (2020), 655–695 | DOI | MR | Zbl
[20] Davletov D.B., Davletov O.B., Davletova R.R., Ershov A.A., “Convergence of eigenelements in a Steklov type boundary value problem for the Lamé operator”, Trudy Instituta Matematiki i Mekhaniki UrO RAN, 27:1 (2021), 37–47 (in Russian) | DOI | MR
[21] Maz'ya V.G., Nazarov S.A., Plamenevskiǐ B.A., “Asymptotic expansions of the eigenvalues of boundary value problems for the Laplace operator in domains with small holes”, Mathematics of the USSR-Izvestiya, 24:2 (1985), 321–345 | DOI | MR | Zbl
[22] Davletov D.B., “Asymptotics of eigenvalues of the two-dimensional Dirichlet boundary-value problem for the Lamé operator in a domain with a small hole”, Mathematical Notes, 93:4 (2013), 545–555 | DOI | DOI | MR | Zbl
[23] Il'in A.M., Matching of asymptotic expansions of solutions of boundary value problems, American Mathematical Society, Providence, R.I., 1992 | MR | MR | Zbl
[24] Il'in A.M., “A boundary value problem for the second order elliptic equation in a domain with a narrow slit. 2. Domain with a small cavity”, Mathematics of the USSR-Sbornik, 32:2 (1977), 227–244 | DOI | MR | Zbl | Zbl
[25] Gadyl'shin R.R., “Ramification of a multiple eigenvalue of the Dirichlet problem for the Laplacian under singular perturbation of the boundary condition”, Mathematical Notes, 52:4 (1992), 1020–1029 | DOI | MR | Zbl
[26] Gadyl'shin R.R., “On eigenfrequencies of bodies with thin branches. II. Asymptotics”, Mathematical Notes, 55:1 (1994), 14–23 | DOI | MR | Zbl
[27] Kamotskii I.V., Nazarov S.A., “Spectral problems in singularly perturbed domains and selfadjoint extensions of differential operators”, American Mathematical Society Translations: Series 2, 199, American Mathematical Society, Providence, R.I., 2000, 151–212 | MR
[28] Davletov D.B., “Asymptotics of eigenvalues of the Dirichlet boundary value problem for the Lamé operator in a three-dimensional domain with a small cavity”, Computational Mathematics and Mathematical Physics, 48:10 (2008), 1811–1822 | DOI | MR | Zbl
[29] Landau L.D., Lifshitz E.M., Course of Theoretical Physics, v. 7, Theory of Elasticity, Butterworth-Heinemann, Oxford, 1986 | MR | MR
[30] Nazarov S.A., “Asymptotic analysis of the problem of elasticity theory in a layer from the point of view of the problem of O.A. Olejnik”, Doklady Mathematics, 55:1 (1997), 46–49 | MR | Zbl
[31] Mikhailov V.P., Differential equations in partial derivatives, Nauka, Moscow, 1976