@article{VUU_2023_33_1_a11,
author = {Y. B. Chukkol and M. Abdullahi and I. Bello},
title = {Non-linear wave propagation in a weakly compressible {Kelvin-Voigt} liquid containing bubbly clusters},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {171--194},
year = {2023},
volume = {33},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a11/}
}
TY - JOUR AU - Y. B. Chukkol AU - M. Abdullahi AU - I. Bello TI - Non-linear wave propagation in a weakly compressible Kelvin-Voigt liquid containing bubbly clusters JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 171 EP - 194 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a11/ LA - en ID - VUU_2023_33_1_a11 ER -
%0 Journal Article %A Y. B. Chukkol %A M. Abdullahi %A I. Bello %T Non-linear wave propagation in a weakly compressible Kelvin-Voigt liquid containing bubbly clusters %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 171-194 %V 33 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a11/ %G en %F VUU_2023_33_1_a11
Y. B. Chukkol; M. Abdullahi; I. Bello. Non-linear wave propagation in a weakly compressible Kelvin-Voigt liquid containing bubbly clusters. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 171-194. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a11/
[1] Grandjean H., Jacques N., Zaleski S., “Shock propagation in liquids containing bubbly clusters: a continuum approach”, Journal of Fluid Mechanics, 701:304–332 (2012) | DOI | Zbl
[2] Naseri H., Koukouvinis P., Malgarinos I., Gavaises M., “On viscoelastic cavitating flows: A numerical study”, Physics of Fluids, 30:3 (2018), 033102 | DOI | MR
[3] Kudryashov N.A., Sinelshchikov D.I., “Equation for the three-dimensional nonlinear waves in liquid with gas bubbles”, Physica Scripta, 85:2 (2012), 025402 | DOI | Zbl
[4] Brennen C.E., Cavitation and bubble dynamics, Cambridge University Press, Cambridge, 2013 | DOI | MR
[5] Tukhvatullina R.R., Frolov S.M., “Numerical simulation of shock and detonation waves in bubbly liquids”, Shock Waves, 30:3 (2020), 263–271 | DOI
[6] Brujan E.A., “The equation of bubble dynamics in a compressible linear viscoelastic liquid”, Fluid Dynamics Research, 29:5 (2001), 287–294 | DOI
[7] Hua C., Johnsen E., “Nonlinear oscillations following the Rayleigh collapse of a gas bubble in a linear viscoelastic (tissue-like) medium”, Physics of Fluids, 25:8 (2013), 083101 | DOI
[8] Brujan E., Cavitation in non-Newtonian fluids, Springer, Berlin–Heidelberg, 2011 | DOI | Zbl
[9] Fuster D., Dopazo C., Hauke G., “Liquid compressibility effects during the collapse of a single cavitating bubble”, The Journal of the Acoustical Society of America, 129:1 (2011), 122–131 | DOI
[10] Warnez M.T., Johnsen E., “Numerical modeling of bubble dynamics in viscoelastic media with relaxation”, Physics of Fluids, 27:6 (2015), 063103 | DOI
[11] Taklifi A., Hanafizadeh P., Aliabadi A., Akhavan-Behabadi M.A., “Nonlinear radial oscillations of micro-bubbles in a compressible UCM medium”, Particulate Science and Technology, 35:1 (2016), 86–92 | DOI
[12] Lang C., Boolakee O., Schmidt S.J., Adams N.A., “A compressible 3D finite volume approach for the simulation of unsteady viscoelastic cavitating flows”, International Journal of Multiphase Flow, 150 (2022), 103981 | DOI | MR
[13] Ando K., Colonius T., Brennen C.E., “Numerical simulation of shock propagation in a polydisperse bubbly liquid”, International Journal of Multiphase Flow, 37:6 (2011), 596–608 | DOI
[14] Ando K., Colonius T., Brennen C.E., “Shock propagation in polydisperse bubbly liquids”, Bubble dynamics and shock waves, Springer, Berlin–Heidelberg, 2013, 141–175 | DOI
[15] Seo J.H., Lele S.K., Tryggvason G., “Investigation and modeling of bubble-bubble interaction effect in homogeneous bubbly flows”, Physics of Fluids, 22:6 (2010), 063302 | DOI | Zbl
[16] Gimaltdinov I.K., Lepikhin S.A., “Study of postdetonation waves after the counter collision of detonation waves in a bubble liquid”, High Temperature, 59:2–6 (2021), 277–282 | DOI
[17] Kubota A., Kato H., Yamaguchi H., “A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section”, Journal of Fluid Mechanics, 240 (1992), 59–96 | DOI
[18] Chahine G.L., Duraiswami R., “Dynamical interactions in a multi-bubble cloud”, Journal of Fluids Engineering, 114:4 (1992), 680–686 | DOI
[19] Chahine G.L., “Cloud cavitation: theory”, 14th Symposium on Naval Hydrodynamics, National Academy Press, Washington (DC), 1983, 165–194
[20] Delale C.F., Nas S., Tryggvason G., “Direct numerical simulations of shock propagation in bubbly liquids”, Physics of Fluids, 17:12 (2005), 121705 | DOI | Zbl
[21] Delale C.F., Tryggvason G., “Shock structure in bubbly liquids: comparison of direct numerical simulations and model equations”, Shock Waves, 17:6 (2008), 433–440 | DOI | Zbl
[22] Fuster D., “A review of models for bubble clusters in cavitating flows”, Flow, Turbulence and Combustion, 102:3 (2019), 497–536 | DOI
[23] Stavropoulos-Vasilakis E., Kyriazis N., Jadidbonab H., Koukouvinis P., Gavaises M., “Review of numerical methodologies for modeling cavitation”, Cavitation and bubble dynamics, Academic Press, 2021, 1–35 | DOI
[24] Gubaidullin A.A., Beregova O.Sh., Bekishev S.A., “Shock waves in non-Newtonian bubbly liquids”, International Journal of Multiphase Flow, 27:4 (2001), 635–655 | DOI | Zbl
[25] Fuster D., Colonius T., “Modelling bubble clusters in compressible liquids”, Journal of Fluid Mechanics, 688 (2011), 352–389 | DOI | MR | Zbl
[26] Bunner B., Tryggvason G., “Dynamics of homogeneous bubbly flows. Part 1. Rise velocity and microstructure of the bubbles”, Journal of Fluid Mechanics, 466 (2002), 17–52 | DOI | MR | Zbl
[27] Bunner B., Tryggvason G., “Effect of bubble deformation on the properties of bubbly flows”, Journal of Fluid Mechanics, 495 (2003), 77–118 | DOI | MR | Zbl
[28] Colonius T., d'Auria F., Brennen C.E., “Acoustic saturation in bubbly cavitating flow adjacent to an oscillating wall”, Physics of Fluids, 12:11 (2000), 2752–2761 | DOI
[29] Preston A.T., Colonius T., Brennen C.E., “A numerical investigation of unsteady bubbly cavitating nozzle flows”, Physics of Fluids, 14:1 (2002), 300–311 | DOI
[30] Wang Yi-Chun, Brennen C.E., “Numerical computation of shock waves in a spherical cloud of cavitation bubbles”, Journal of Fluids Engineering, 121:4 (1999), 872–880 | DOI
[31] Nigmatulin R.I., “Mathematical modelling of bubbly liquid motion and hydrodynamical effects in wave propagation phenomenon”, Mechanics and physics of bubbles in liquids, Proceedings IUTAM Symposium (Pasadena, California, 15-19 June 1981), Springer, Dordrecht, 267–289 | DOI
[32] Nakoryakov V.E., Pokusaev B.G., Shreiber I.R., Wave propagation in gas-liquid media, CRC Press, 1993
[33] Prosperetti A., “The equation of bubble dynamics in a compressible liquid”, The Physics of Fluids, 30:11 (1987), 3626–3628 | DOI | MR | Zbl
[34] Doinikov A.A., “Equations of coupled radial and translational motions of a bubble in a weakly compressible liquid”, Physics of Fluids, 17:12 (2005), 128101 | DOI | Zbl
[35] Prosperetti A., “Bubble phenomena in sound fields: part one”, Ultrasonics, 22:2 (1984), 69–77 | DOI
[36] Kafiabad H.A., Sadeghy K., “Chaotic behavior of a single spherical gas bubble surrounded by a Giesekus liquid: A numerical study”, Journal of Non-Newtonian Fluid Mechanics, 165:13–14 (2010), 800–811 | DOI | Zbl
[37] Kim C., “Collapse of spherical bubbles in Maxwell fluids”, Journal of Non-Newtonian Fluid Mechanics, 55:1 (1994), 37–58 | DOI
[38] Delale C.F., Schnerr G.H., Sauer J., “Quasi-one-dimensional steady-state cavitating nozzle flows”, Journal of Fluid Mechanics, 427 (2001), 167–204 | DOI | Zbl
[39] Ilinskii Yu.A., Zabolotskaya E.A., “Cooperative radiation and scattering of acoustic waves by gas bubbles in liquids”, The Journal of the Acoustical Society of America, 92:5 (1992), 2837–2841 | DOI
[40] Oskolkov A.P., “Theory of nonstationary flows of Kelvin-Voigt fluids”, Journal of Soviet Mathematics, 28:5 (1985), 751–758 | DOI | MR | Zbl
[41] Albernaz D.L., Cunha F.R., “Bubble dynamics in a Maxwell fluid with extensional viscosity”, Mechanics Research Communications, 38:3 (2011), 255–260 | DOI | Zbl
[42] Yang X., Church C.C., “Nonlinear dynamics of gas bubbles in viscoelastic media”, Acoustics Research Letters Online, 6:3 (2005), 151–156 | DOI
[43] Kundu S., Pani A.K., “Stabilization of Kelvin–Voigt viscoelastic fluid flow model”, Applicable Analysis, 98:12 (2019), 2284–2307 | DOI | MR | Zbl
[44] Wazwaz A.-M., Partial differential equations and solitary waves theory, Springer, Berlin–Heidelberg, 2010 | DOI | MR
[45] Prosperetti A., “Bubble dynamics: a review and some recent results”, Applied Scientific Research, 38:1 (1982), 145–164 | DOI | MR | Zbl
[46] van Wijngaarden L., “On the equations of motion for mixtures of liquid and gas bubbles”, Journal of Fluid Mechanics, 33:3 (1968), 465–474 | DOI | Zbl
[47] Leblond H., “The reductive perturbation method and some of its applications”, Journal of Physics B: Atomic, Molecular and Optical Physics, 41:4 (2008), 043001 | DOI
[48] Shah A., Saeed R., “Ion acoustic shock waves in a relativistic electron-positron-ion plasmas”, Physics Letters A, 373:45 (2009), 4164–4168 | DOI | Zbl
[49] Kaya D., “An application of the decomposition method for the two-dimensional KdV-Burgers equation”, Computers and Mathematics with Applications, 48:10–11 (2004), 1659–1665 | DOI | MR | Zbl
[50] Zabihi F., Saffarian M., “A meshless method using radial basis functions for numerical solution of the two-dimensional KdV-Burgers equation”, The European Physical Journal Plus, 131:7 (2016), 243 | DOI | MR
[51] Yan Xu, Chi-wang Shu, “Local discontinuous Galerkin methods for three classes of nonlinear wave equations”, Journal of Computational Mathematics, 22:2 (2004), 250–274 https://global-sci.org/intro/article_detail/jcm/10327.html | MR | Zbl
[52] Zaki S.I., “Solitary waves of the Korteweg-de Vries-Burgers' equation”, Computer Physics Communications, 126:3 (2000), 207–218 | DOI | MR | Zbl