Mots-clés : Jost solutions
@article{VUU_2023_33_1_a10,
author = {U.A. Hoitmetov and T. G. Hasanov},
title = {Integration of the {Korteweg-de} {Vries} equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions},
journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
pages = {156--170},
year = {2023},
volume = {33},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a10/}
}
TY - JOUR AU - U.A. Hoitmetov AU - T. G. Hasanov TI - Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions JO - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki PY - 2023 SP - 156 EP - 170 VL - 33 IS - 1 UR - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a10/ LA - en ID - VUU_2023_33_1_a10 ER -
%0 Journal Article %A U.A. Hoitmetov %A T. G. Hasanov %T Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions %J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki %D 2023 %P 156-170 %V 33 %N 1 %U http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a10/ %G en %F VUU_2023_33_1_a10
U.A. Hoitmetov; T. G. Hasanov. Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 156-170. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a10/
[1] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Method for solving the Korteweg-de Vries equation”, Physical Review Letters, 19:19 (1967), 1095–1097 | DOI | MR
[2] Faddeev L.D., “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Nine papers on partial differential equations and functional analysis, Amer. Math. Soc., Providence, RI, 1967, 139–166 | MR | Zbl | Zbl
[3] Marchenko V.A., Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, 1977 | MR
[4] Levitan B.M., Inverse Sturm–Liouville problems, Nauka, Moscow, 1984 | MR
[5] Lax P.D., “Integrals of nonlinear equations of evolution and solitary waves”, Communications on Pure and Applied Mathematics, 21:5 (1968), 467–490 | DOI | MR | Zbl
[6] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P., Theory of solitons. Inverse problem method, Nauka, Moscow, 1980 | DOI | MR
[7] Ablowitz M.J., Segur H., Solitons and the inverse scattering transform, SIAM Philadelphia, 1981 | DOI | MR | MR | Zbl
[8] Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and nonlinear wave equations, Academic Press, London, 1982 | MR | Zbl
[9] Mel'nikov V.K., “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Physics Letters A, 133:9 (1988), 493–496 | DOI | MR
[10] Mel'nikov V.K., “Integration of the Korteweg-de Vries equation with a source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR | Zbl
[11] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, Journal of Physics A: Mathematical and General, 23:8 (1990), 1385–1403 | DOI | MR | Zbl
[12] Claude C., Latifi A., Leon J., “Nonlinear resonant scattering and plasma instability: an integrable model”, Journal of Mathematical Physics, 32:12 (1991), 3321–3330 | DOI | MR | Zbl
[13] Khasanov A.B., Matyakubov M.M., “Integration of the nonlinear Korteweg-de Vries equation with an additional term”, Theoretical and Mathematical Physics, 203:2 (2020), 596–607 | DOI | DOI | MR | Zbl
[14] Khasanov A.B., Khasanov T.G., “The Cauchy problem for the Korteweg-de Vries equation in the class of periodic infinite-gap functions”, Zapiski Nauchnykh Seminarov POMI, 506 (2021), 258–278 (in Russian) | DOI | DOI
[15] Wazwaz A.-M., “Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator”, Waves in Random and Complex Media, 27:4 (2017), 768–778 | DOI | MR
[16] Urazboev G.U., Hasanov M.M., “Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:2 (2022), 228–239 (in Russian) | DOI | MR
[17] Matyoqubov M.M., Yakhshimuratov A.B., “Integration of higher Korteweg-de Vries equation with a self-consistent source in class of periodic functions”, Ufa Mathematical Journal, 5:1 (2013), 102–111 | DOI | MR | Zbl
[18] Li L., Xie Y., Zhu Sh., “New exact solutions for a generalized KdV equation”, Nonlinear Dynamics, 92:2 (2018), 215–219 | DOI | Zbl
[19] Yakhshimuratov A.B., “Integration of a higher-order nonlinear Schrödinger system with a self-consistent source in the class of periodic functions”, Theoretical and Mathematical Physics, 202:2 (2020), 137–149 | DOI | DOI | MR | Zbl
[20] Muminov U.B., Khasanov A.B., “Integration of a defocusing nonlinear Schrödinger equation with additional terms”, Theoretical and Mathematical Physics, 211:1 (2022), 514–531 | DOI | DOI | MR
[21] Babajanov B.A., Babadjanova A.K., Azamatov A.Sh., “Integration of the differential-difference sine-Gordon equation with a self-consistent source”, Theoretical and Mathematical Physics, 210:3 (2022), 327-336 | DOI | DOI | MR
[22] Babajanov B.A., Khasanov A.B., “Periodic Toda chain with an integral source”, Theoretical and Mathematical Physics, 184:2 (2015), 1114–1128 | DOI | DOI | MR | Zbl
[23] Karunakar P., Chakraverty S., “Effect of Coriolis constant on geophysical Korteweg-de Vries equation”, Journal of Ocean Engineering and Science, 4:2 (2019), 113–121 | DOI
[24] Rizvi S.T.R., Seadawy A.R., Ashraf F., Younis M., Iqbal H., Baleanu D., “Lump and interaction solutions of a geophysical Korteweg-de Vries equation”, Results in Physics, 19 (2020), 103661 | DOI | MR
[25] Hasanov A.B., Hoitmetov U.A., “On integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing functions”, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 47:2 (2021), 250–261 | DOI | MR | Zbl
[26] Hoitmetov U.A., “Integrating the loaded KdV equation with a self-consistent source of integral type in the class of rapidly decreasing complex-valued functions”, Matematicheskie Trudy, 24:2 (2021), 181–198 (in Russian) | DOI | MR | Zbl
[27] Nakhushev A.M., Equations of mathematical biology, Vysshaya Shkola, Moscow, 1995
[28] Kozhanov A.I., “Nonlinear loaded equations and inverse problems”, Computational Mathematics and Mathematical Physics, 44:4 (2004), 657–678 | MR | Zbl
[29] Sagdullayeva M.M., “Nonlocal problem with the integral condition for a loaded heate equation”, Vestnik KRAUNC. Fiziko-matematičeskie Nauki, 34:1 (2021), 47–56 (in Russian) | DOI | MR | Zbl
[30] Abdullayev V.M., “Numerical solution of a boundary value problem for a loaded parabolic equation with nonlocal boundary conditions”, Vestnik KRAUNC. Fiziko-matematičeskie Nauki, 32:3 (2020), 15–28 (in Russian) | DOI | MR | Zbl
[31] Sabitov K.B., “Initial-boundary problem for parabolic-hyperbolic equation with loaded summands”, Russian Mathematics, 59:6 (2015), 23–33 | DOI | MR | Zbl
[32] Lugovtsov A.A., “Propagation of nonlinear waves in an inhomogeneous gas-liquid medium. Derivation of wave equations in the Korteweg-de Vries approximation”, Journal of Applied Mechanics and Technical Physics, 50:2 (2009), 327–335 | DOI | MR
[33] Lugovtsov A.A., “Propagation of nonlinear waves in a gas-liquid medium. Exact and approximate analytical solutions of wave equations”, Journal of Applied Mechanics and Technical Physics, 51:1 (2010), 44–50 | DOI | MR | Zbl