Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 156-170 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we solve the Cauchy problem for the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions. To solve this problem, the method of the inverse scattering problem is used. The evolution of the scattering data of the self-adjoint Sturm-Liouville operator, whose coefficient is a solution of the Korteweg-de Vries equation with loaded terms and a self-consistent source, is obtained. Examples are given to illustrate the application of the obtained results.
Keywords: loaded Korteweg-de Vries equation, inverse scattering problem, Gelfand-Levitan-Marchenko integral equation, evolution of the scattering data.
Mots-clés : Jost solutions
@article{VUU_2023_33_1_a10,
     author = {U.A. Hoitmetov and T. G. Hasanov},
     title = {Integration of the {Korteweg-de} {Vries} equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {156--170},
     year = {2023},
     volume = {33},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a10/}
}
TY  - JOUR
AU  - U.A. Hoitmetov
AU  - T. G. Hasanov
TI  - Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 156
EP  - 170
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a10/
LA  - en
ID  - VUU_2023_33_1_a10
ER  - 
%0 Journal Article
%A U.A. Hoitmetov
%A T. G. Hasanov
%T Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 156-170
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a10/
%G en
%F VUU_2023_33_1_a10
U.A. Hoitmetov; T. G. Hasanov. Integration of the Korteweg-de Vries equation with loaded terms and a self-consistent source in the class of rapidly decreasing functions. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 156-170. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a10/

[1] Gardner C.S., Greene J.M., Kruskal M.D., Miura R.M., “Method for solving the Korteweg-de Vries equation”, Physical Review Letters, 19:19 (1967), 1095–1097 | DOI | MR

[2] Faddeev L.D., “Properties of the $S$-matrix of the one-dimensional Schrödinger equation”, Nine papers on partial differential equations and functional analysis, Amer. Math. Soc., Providence, RI, 1967, 139–166 | MR | Zbl | Zbl

[3] Marchenko V.A., Sturm-Liouville operators and their applications, Naukova Dumka, Kiev, 1977 | MR

[4] Levitan B.M., Inverse Sturm–Liouville problems, Nauka, Moscow, 1984 | MR

[5] Lax P.D., “Integrals of nonlinear equations of evolution and solitary waves”, Communications on Pure and Applied Mathematics, 21:5 (1968), 467–490 | DOI | MR | Zbl

[6] Zakharov V.E., Manakov S.V., Novikov S.P., Pitaevskii L.P., Theory of solitons. Inverse problem method, Nauka, Moscow, 1980 | DOI | MR

[7] Ablowitz M.J., Segur H., Solitons and the inverse scattering transform, SIAM Philadelphia, 1981 | DOI | MR | MR | Zbl

[8] Dodd R.K., Eilbeck J.C., Gibbon J.D., Morris H.C., Solitons and nonlinear wave equations, Academic Press, London, 1982 | MR | Zbl

[9] Mel'nikov V.K., “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Physics Letters A, 133:9 (1988), 493–496 | DOI | MR

[10] Mel'nikov V.K., “Integration of the Korteweg-de Vries equation with a source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR | Zbl

[11] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, Journal of Physics A: Mathematical and General, 23:8 (1990), 1385–1403 | DOI | MR | Zbl

[12] Claude C., Latifi A., Leon J., “Nonlinear resonant scattering and plasma instability: an integrable model”, Journal of Mathematical Physics, 32:12 (1991), 3321–3330 | DOI | MR | Zbl

[13] Khasanov A.B., Matyakubov M.M., “Integration of the nonlinear Korteweg-de Vries equation with an additional term”, Theoretical and Mathematical Physics, 203:2 (2020), 596–607 | DOI | DOI | MR | Zbl

[14] Khasanov A.B., Khasanov T.G., “The Cauchy problem for the Korteweg-de Vries equation in the class of periodic infinite-gap functions”, Zapiski Nauchnykh Seminarov POMI, 506 (2021), 258–278 (in Russian) | DOI | DOI

[15] Wazwaz A.-M., “Negative-order KdV equations in (3+1) dimensions by using the KdV recursion operator”, Waves in Random and Complex Media, 27:4 (2017), 768–778 | DOI | MR

[16] Urazboev G.U., Hasanov M.M., “Integration of the negative order Korteweg-de Vries equation with a self-consistent source in the class of periodic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 32:2 (2022), 228–239 (in Russian) | DOI | MR

[17] Matyoqubov M.M., Yakhshimuratov A.B., “Integration of higher Korteweg-de Vries equation with a self-consistent source in class of periodic functions”, Ufa Mathematical Journal, 5:1 (2013), 102–111 | DOI | MR | Zbl

[18] Li L., Xie Y., Zhu Sh., “New exact solutions for a generalized KdV equation”, Nonlinear Dynamics, 92:2 (2018), 215–219 | DOI | Zbl

[19] Yakhshimuratov A.B., “Integration of a higher-order nonlinear Schrödinger system with a self-consistent source in the class of periodic functions”, Theoretical and Mathematical Physics, 202:2 (2020), 137–149 | DOI | DOI | MR | Zbl

[20] Muminov U.B., Khasanov A.B., “Integration of a defocusing nonlinear Schrödinger equation with additional terms”, Theoretical and Mathematical Physics, 211:1 (2022), 514–531 | DOI | DOI | MR

[21] Babajanov B.A., Babadjanova A.K., Azamatov A.Sh., “Integration of the differential-difference sine-Gordon equation with a self-consistent source”, Theoretical and Mathematical Physics, 210:3 (2022), 327-336 | DOI | DOI | MR

[22] Babajanov B.A., Khasanov A.B., “Periodic Toda chain with an integral source”, Theoretical and Mathematical Physics, 184:2 (2015), 1114–1128 | DOI | DOI | MR | Zbl

[23] Karunakar P., Chakraverty S., “Effect of Coriolis constant on geophysical Korteweg-de Vries equation”, Journal of Ocean Engineering and Science, 4:2 (2019), 113–121 | DOI

[24] Rizvi S.T.R., Seadawy A.R., Ashraf F., Younis M., Iqbal H., Baleanu D., “Lump and interaction solutions of a geophysical Korteweg-de Vries equation”, Results in Physics, 19 (2020), 103661 | DOI | MR

[25] Hasanov A.B., Hoitmetov U.A., “On integration of the loaded Korteweg-de Vries equation in the class of rapidly decreasing functions”, Proceedings of the Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan, 47:2 (2021), 250–261 | DOI | MR | Zbl

[26] Hoitmetov U.A., “Integrating the loaded KdV equation with a self-consistent source of integral type in the class of rapidly decreasing complex-valued functions”, Matematicheskie Trudy, 24:2 (2021), 181–198 (in Russian) | DOI | MR | Zbl

[27] Nakhushev A.M., Equations of mathematical biology, Vysshaya Shkola, Moscow, 1995

[28] Kozhanov A.I., “Nonlinear loaded equations and inverse problems”, Computational Mathematics and Mathematical Physics, 44:4 (2004), 657–678 | MR | Zbl

[29] Sagdullayeva M.M., “Nonlocal problem with the integral condition for a loaded heate equation”, Vestnik KRAUNC. Fiziko-matematičeskie Nauki, 34:1 (2021), 47–56 (in Russian) | DOI | MR | Zbl

[30] Abdullayev V.M., “Numerical solution of a boundary value problem for a loaded parabolic equation with nonlocal boundary conditions”, Vestnik KRAUNC. Fiziko-matematičeskie Nauki, 32:3 (2020), 15–28 (in Russian) | DOI | MR | Zbl

[31] Sabitov K.B., “Initial-boundary problem for parabolic-hyperbolic equation with loaded summands”, Russian Mathematics, 59:6 (2015), 23–33 | DOI | MR | Zbl

[32] Lugovtsov A.A., “Propagation of nonlinear waves in an inhomogeneous gas-liquid medium. Derivation of wave equations in the Korteweg-de Vries approximation”, Journal of Applied Mechanics and Technical Physics, 50:2 (2009), 327–335 | DOI | MR

[33] Lugovtsov A.A., “Propagation of nonlinear waves in a gas-liquid medium. Exact and approximate analytical solutions of wave equations”, Journal of Applied Mechanics and Technical Physics, 51:1 (2010), 44–50 | DOI | MR | Zbl