On Shimoda's Theorem
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 17-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The present work is devoted to Shimoda's Theorem on the holomorphicity of a function $f(z,w)$ which is holomorphic by $w\in V$ for each fixed $z\in U$ and is holomorphic by $z\in U$ for each fixed $w\in E$, where $E\subset V$ is a countable set with at least one limit point in $V$. Shimoda proves that in this case $f(z,w)$ is holomorphic in $U\times V$ except for a nowhere dense closed subset of $U\times V$. We prove the converse of this result, that is for an arbitrary given nowhere dense closed subset of $U$, $S\subset U$, there exists a holomorphic function, satisfying Shimoda's Theorem on $U\times V\subset {\mathbb C}^{2}$, that is not holomorphic on $S\times V$. Moreover, we observe conditions which imply empty exception sets on Shimoda's Theorem and prove generalizations of Shimoda's Theorem.
Keywords: Hartogs's phenomena, Shimoda's Theorem, separately holomorphic functions, power series.
@article{VUU_2023_33_1_a1,
     author = {A. A. Atamuratov and K. K. Rasulov},
     title = {On {Shimoda's} {Theorem}},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {17--31},
     year = {2023},
     volume = {33},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a1/}
}
TY  - JOUR
AU  - A. A. Atamuratov
AU  - K. K. Rasulov
TI  - On Shimoda's Theorem
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 17
EP  - 31
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a1/
LA  - en
ID  - VUU_2023_33_1_a1
ER  - 
%0 Journal Article
%A A. A. Atamuratov
%A K. K. Rasulov
%T On Shimoda's Theorem
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 17-31
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a1/
%G en
%F VUU_2023_33_1_a1
A. A. Atamuratov; K. K. Rasulov. On Shimoda's Theorem. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 17-31. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a1/

[1] Shabat B.V., Introduction to complex analysis. Part II. Functions of several variables, AMS, Providence, 1992 | DOI | MR | MR | Zbl

[2] Hukuhara M., “L'extensions du theoreme d'Osgood et de Hartogs”, Kansu-hoteisiki ogobi Oyo-Kaiseki, 48:8 (1930), 48–49

[3] Shimoda I., “Notes on the functions of two complex variable”, Journal of Gakugei, Tokushima University. Mathematics, 8:8 (1957), 1–3 | MR | Zbl

[4] Terada T., “Sur une certaine condition sous laquelle une fonction de plusieurs variables complexes est holomorphe. Diminution de la condition dans le theoreme de Hartogs”, Publications of the Research Institute for Mathematical Sciences, 2:3 (1966), 383–396 | DOI | MR | Zbl

[5] Siciak J., “Separately analytic functions and envelopes of holomorphy of some lower dimensional subsets of ${\mathbb C}^{n}$”, Annales Polonici Mathematici, 22:2 (1969), 145–171 | DOI | MR | Zbl

[6] Zaharjuta V.P., “Separately analytic functions, generalizations of Hartogs' theorem, and envelopes of holomorphy”, Mathematics of the USSR-Sbornik, 30:1 (1976), 51–67 | DOI | MR | Zbl

[7] Gonchar A.A., “On analytic continuation from the “edge of the wedge””, Annales Academiae Scientiarum Fennicae. Series A I. Mathematica, 10 (1985), 221–225 | DOI | MR | Zbl

[8] Sadullaev A.S., Chirka E.M., “On continuation of functions with polar singularities”, Mathematics of the USSR-Sbornik, 60:2 (1988), 377–384 | DOI | MR | Zbl | Zbl

[9] Jarnicki M., Pflug P., “An extension theorem for separately holomorphic functions with analytic singularities”, Annales Polonici Mathematici, 80 (2003), 143–161 | DOI | MR | Zbl

[10] Jarnicki M., Pflug P., “An extension theorem for separately holomorphic functions with pluripolar singularities”, Transactions of the American Mathematical Society, 355:3 (2003), 1251–1267 | DOI | MR | Zbl

[11] Jarnicki M., Pflug P., “A new cross theorem for separately holomorphic functions”, Proceedings of the American Mathematical Society, 138:11 (2010), 3923–3932 | DOI | MR | Zbl

[12] Sadullaev A.S., Imomkulov S.A., “Extension of holomorphic and pluriharmonic functions with thin singularities on parallel sections”, Proceedings of the Steklov Institute of Mathematics, 253:1 (2006), 144-159 | DOI | MR | Zbl

[13] Bang P.H., “Separately locally holomorphic functions and their singular sets”, Bulletin Mathematique de la Societe des Sciences Mathematiques de Roumanie. Nouvelle Serie, 51(99):2 (2008), 103–108 https://www.jstor.org/stable/43679098 | MR | Zbl

[14] Sadullaev A.S., Tuychiev T.T., “On continuation of Hartogs series that admit holomorphic extension to parallel sections”, Uzbekskii Matematicheskii Zhurnal, 2009, no. 1, 148–157 (in Russian)

[15] Baracco L., “Separate holomorphic extension along lines and holomorphic extension from the sphere to the ball”, American Journal of Mathematics, 135:2 (2013), 493–497 | DOI | MR | Zbl

[16] Boman J., “Siciak's theorem on separate analyticity”, Analysis meets geometry, Birkhauser, Cham, 2017, 135–145 | DOI | MR | Zbl

[17] Krantz S.G., “On a theorem of F. Forelli and a result of Hartogs”, Complex Variables and Elliptic Equations, 63:4 (2018), 591–597 | DOI | MR | Zbl

[18] Bochnak J., Kucharz W., “Global variants of Hartogs' theorem”, Archiv der Mathematik, 113:3 (2019), 281–290 | DOI | MR | Zbl

[19] Cho Y.-W.L., Kim K.-T., “Functions holomorphic along a $C^{1}$ pencil of holomorphic discs”, The Journal of Geometric Analysis, 31:11 (2021), 10634–10647 | DOI | MR | Zbl

[20] Boggess A., Dwilewicz R., Porten E., “On the Hartogs extension theorem for unbounded domains in ${\mathbb C}^{n}$”, Annales de l'Institut Fourier, 72:3 (2022), 1185-1206 | DOI | MR

[21] Lawrence M.G., “The $L^{p}$ CR Hartogs separate analyticity theorem for convex domains”, Mathematische Zeitschrift, 288:1–2 (2018), 401–414 | DOI | MR | Zbl

[22] Lewandowski A., “A new Hartogs-type extension result for the cross-like objects”, Kyushu Journal of Mathematics, 69:1 (2015), 77-94 | DOI | MR | Zbl

[23] Thai Thuan Quang, Nguyen Van Dai, “On Hartogs extension theorems for separately $(\cdot,W)$-holomorphic functions”, International Journal of Mathematics, 25:12 (2014), 1450112 | DOI | MR | Zbl

[24] Thai Thuan Quang, Nguyen Van Dai, “On the holomorphic extension of vector valued functions”, Complex Analysis and Operator Theory, 9:3 (2015), 567–591 | DOI | MR | Zbl

[25] Thai Thuan Quang, Lien Vuong Lam, “Cross theorems for separately $(\cdot,W)$-meromorphic functions”, Taiwanese Journal of Mathematics, 20:5 (2016), 1009–1039 | DOI | MR | Zbl

[26] Imomkulov S.A., Abdikadirov S.M., “Removable singularities of separately harmonic functions”, Journal of Siberian Federal University. Mathematics and Physics, 14:3 (2021), 369–375 | DOI | MR

[27] Palamodov V.P., “Hartogs phenomenon for systems of differential equations”, The Journal of Geometric Analysis, 24:2 (2014), 667-686 | DOI | MR | Zbl

[28] Goluzin G.M., Geometric theory of functions of a complex variable, Nauka, M., 1966 | MR

[29] Gamelin T.W., Uniform algebras, AMS, 1969 | MR