Potential theory on an analytic surface
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 3-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The work is devoted to the theory of pluripotential on analytic surfaces. The pluripotential theory on the complex space ${\mathbb C}^{n},$ as well as on the Stein complex manifold $X\subset{\mathbb C}^{N}$ (without a singular set) have been studied in enough detail. In this work, we propose a new approach for studying the main objects of potential theory on an analytic set with a non-empty singular (critical) set.
Keywords: analytic set, plurisubharmonic function, ${\mathcal{P}}$-measure, maximal function.
Mots-clés : pluripolar set
@article{VUU_2023_33_1_a0,
     author = {B. I. Abdullaev and Kh. Q. Kamolov},
     title = {Potential theory on an analytic surface},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {3--16},
     year = {2023},
     volume = {33},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a0/}
}
TY  - JOUR
AU  - B. I. Abdullaev
AU  - Kh. Q. Kamolov
TI  - Potential theory on an analytic surface
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2023
SP  - 3
EP  - 16
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a0/
LA  - ru
ID  - VUU_2023_33_1_a0
ER  - 
%0 Journal Article
%A B. I. Abdullaev
%A Kh. Q. Kamolov
%T Potential theory on an analytic surface
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2023
%P 3-16
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a0/
%G ru
%F VUU_2023_33_1_a0
B. I. Abdullaev; Kh. Q. Kamolov. Potential theory on an analytic surface. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 33 (2023) no. 1, pp. 3-16. http://geodesic.mathdoc.fr/item/VUU_2023_33_1_a0/

[1] Abdullaev B.I., Imomkulov S.A., Sharipov R.A., “Structure of singular sets of some classes of subharmonic functions”, Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki, 31:4 (2021), 519–535 (in Russian) | DOI | MR | Zbl

[2] Bedford E., Taylor B.A., “A new capacity for plurisubharmonic functions”, Acta Mathematica, 149 (1982), 1–40 | DOI | MR | Zbl

[3] Berndtsson B., Paun M., “Quantitative extensions of pluricanonical forms and closed positive currents”, Nagoya Mathematical Journal, 205 (2012), 25–65 | DOI | MR | Zbl

[4] Boucksom S., Favre C., Jonsson M., “Solution to a non-Archimedean Monge-Ampere equation”, Journal of the American Mathematical Society, 28:3 (2015), 617–667 | DOI | MR | Zbl

[5] Brelot M., Elements de la theorie classique du potentiel, Centre de documentation universitaire, Paris, 1959 | MR | MR | Zbl

[6] Chirka E.M., Complex analytic sets, Kluwer Academic Publishers, Dordrecht, 1989 | DOI | MR | Zbl | Zbl

[7] Coman D., Guedj V., Zeriahi A., “Extension of plurisubharmonic functions with growth control”, Journal fur die reine und angewandte Mathematik (Crelles Journal)., 2013:676 (2013), 33-49 | DOI | MR | Zbl

[8] Darvas T., Di Nezza E., Lu C.H., “Log-concavity of volume and complex Monge-Ampere equations with prescribed singularity”, Mathematische Annalen, 379:1–2 (2021), 95–132. | DOI | MR | Zbl

[9] Darvas T., Di Nezza E., Lu C.H., “Monotonicity of nonpluripolar products and complex Monge-Ampere equations with prescribed singularity”, Analysis and PDE, 11:8 (2018), 2049–2087 | DOI | MR | Zbl

[10] Herve M., Several complex variables, Oxford University Press, Oxford, 1963 | MR | Zbl

[11] Klimek M., Pluripotential theory, Clarendon Press, Oxford, 1991 | MR | Zbl

[12] Lelong P., “Ensembles singuliers impropres des fonctions plurisousharmoniques”, Journal de Mathematiques Pures et Appliquees. Neuvieme Série, 36 (1957), 263–303 (in French) | MR | Zbl

[13] Shabat B.V., Introduction to complex analysis. Part II. Functions of several variables, AMS, Providence, 1992 | DOI | MR | MR | Zbl

[14] Sadullaev A., Pluripotential theory. Applications, Palmarium Academic Publishing, 2012

[15] Sadullaev A., “An estimate for polynomials on analytic sets”, Mathematics of the USSR-Izvestiya, 20:3 (1983), 493–502 | DOI | MR | Zbl | Zbl

[16] Sadullaev A., “Plurisubharmonic measure and capacities on complex manifolds”, Russian Mathematical Surveys, 36:4 (1981), 61–119 | DOI | MR | Zbl | Zbl

[17] Sadullaev A.S., Abdullaev B.I., Sharipov R.A., “A removable singularity of the bounded above $m-sh$ functions”, Uzbek Mathematical Journal, 2016, no. 3, 118–124 (in Russian) | MR

[18] Siciak J., “Extremal plurisubharmonic function in ${\mathbb C}^{N}$”, Annales Polonici Mathematici, 39 (1981), 175–211 | DOI | MR | Zbl

[19] Nystrom D.W., “Monotonicity of non-pluripolar Monge-Ampere masses”, Indiana University Mathematics Journal, 68:2 (2019), 579–591 | DOI | MR | Zbl

[20] Zakharyuta V.P., “Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables. I”, Teoriya Funktsii, Funktsional'nyi Analiz i ikh Prilozheniya, 1974, no. 19, 133–157 (in Russian) | Zbl

[21] Zakharyuta V.P., “Extremal plurisubharmonic functions, Hilbert scales, and the isomorphism of spaces of analytic functions of several variables. II”, Teoriya Funktsii, Funktsional'nyi Analiz i ikh Prilozheniya, 1974, no. 21, 65–83 (in Russian) | Zbl

[22] Zeriahi A., “Fonction de Green pluriclomplexe a pole a l'infini sur un espace de Stein parabolique et applications”, Mathematica Scandinavica, 69 (1991), 89–126 (in French) | DOI | MR | Zbl