Numerical analysis of the periodic controls of an aquatic robot
Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 644-660 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A model governing the motion of an aquatic robot with a shell in the form of a symmetrical airfoil NACA0040 is considered. The motion is controlled by periodic oscillations of the rotor. It is numerically shown that for physically admissible values of the control parameters in the phase space of the system, there exists only one limit cycle. The limit cycle that occurs under symmetric control corresponds to the motion of the robot near a straight line. In the case of asymmetric controls, the robot moves near a circle. An algorithm for controlling the course of the robot motion is proposed. This algorithm uses determined limit cycles and transient processes between them.
Keywords: motion in a fluid, aquatic robot, control algorithm
Mots-clés : limit cycles.
@article{VUU_2022_32_4_a9,
     author = {E. V. Vetchanin and I. S. Mamaev},
     title = {Numerical analysis of the periodic controls of an aquatic robot},
     journal = {Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹ\^uternye nauki},
     pages = {644--660},
     year = {2022},
     volume = {32},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a9/}
}
TY  - JOUR
AU  - E. V. Vetchanin
AU  - I. S. Mamaev
TI  - Numerical analysis of the periodic controls of an aquatic robot
JO  - Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
PY  - 2022
SP  - 644
EP  - 660
VL  - 32
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a9/
LA  - ru
ID  - VUU_2022_32_4_a9
ER  - 
%0 Journal Article
%A E. V. Vetchanin
%A I. S. Mamaev
%T Numerical analysis of the periodic controls of an aquatic robot
%J Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki
%D 2022
%P 644-660
%V 32
%N 4
%U http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a9/
%G ru
%F VUU_2022_32_4_a9
E. V. Vetchanin; I. S. Mamaev. Numerical analysis of the periodic controls of an aquatic robot. Vestnik Udmurtskogo universiteta. Matematika, mehanika, kompʹûternye nauki, Tome 32 (2022) no. 4, pp. 644-660. http://geodesic.mathdoc.fr/item/VUU_2022_32_4_a9/

[1] Arnold V.I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[2] Artemova E.M., Vetchanin E.V., “Control of the motion of a circular cylinder in an ideal fluid using a source”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 30:4 (2020), 604–617 | DOI | MR

[3] Kilin A.A., Karavaev Yu.L., Klekovkin A.V., “Kinematicheskaya model upravleniya vysokomanevrennym mobilnym sferorobotom s vnutrennei omnikolesnoi platformoi”, Nelineinaya dinamika, 10:1 (2014), 113–126 | DOI

[4] Kilin A.A., Karavaev Yu.L., “Kinematicheskaya model upravleniya sferorobotom s neuravnoveshennoi omnikolesnoi platformoi”, Nelineinaya dinamika, 10:4 (2014), 497–511 | DOI

[5] Klekovkin A.V., “Modelirovanie dvizheniya bezvintovogo mobilnogo robota s neizmenyaemoi formoi obolochki upravlyaemogo s pomoschyu vrascheniya vnutrennego rotora”, Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompyuternye nauki, 30:4 (2020), 645–656 | DOI

[6] Martynenko Yu.G., Formalskii A.M., “K teorii upravleniya monotsiklom”, Prikladnaya matematika i mekhanika, 69:4 (2005), 569–583

[7] Artemova E.M., Karavaev Yu.L., Mamaev I.S., Vetchanin E.V., “Dynamics of a spherical robot with variable moments of inertia and a displaced center of mass”, Regular and Chaotic Dynamics, 25:6 (2020), 689–706 | DOI | MR

[8] Artemova E.M., Kilin A.A., “Dynamics and control of a three-link wheeled vehicle”, International Conference Nonlinearity, Information and Robotics (NIR), 2020 | DOI

[9] Bizyaev I.A., Borisov A.V., Mamaev I.S., “Dynamics of a Chaplygin sleigh with an unbalanced rotor: regular and chaotic motions”, Nonlinear Dynamics, 98:3 (2019), 2277–2291 | DOI | MR

[10] Bizyaev I.A., Bolotin S.V., Mamaev I.S., “Normal forms and averaging in an acceleration problem in nonholonomic mechanics”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 31:1 (2021), 013132 | DOI | MR

[11] Bizyaev I.A., Borisov A.V., Kuznetsov S.P., “The Chaplygin sleigh with friction moving due to periodic oscillations of an internal mass”, Nonlinear Dynamics, 95:1 (2019), 699–714 | DOI

[12] Borisov A.V., Kilin A.A., Karavaev Y.L., Klekovkin A.V., “Stabilization of the motion of a spherical robot using feedbacks”, Applied Mathematical Modelling, 69 (2019), 583–592 | DOI | MR

[13] Ivanova T.B., Kilin A.A., Pivovarova E.N., “Controlled motion of a spherical robot with feedback. I”, Journal of Dynamical and Control Systems, 24:3 (2018), 497–510 | DOI | MR

[14] Ivanova T.B., Kilin A.A., Pivovarova E.N., “Controlled motion of a spherical robot with feedback. II”, Journal of Dynamical and Control Systems, 25:1 (2019), 1–16 | DOI | MR

[15] Karavaev Y.L., Klekovkin A.V., Mamaev I.S., Tenenev V.A., Vetchanin E.V., “A simple physical model for control of an propellerless aquatic robot”, Journal of Mechanisms and Robotics, 14:1 (2022), 011007 | DOI | MR

[16] Kilin A.A., Pivovarova E.N., “Motion control of the spherical robot rolling on a vibrating plane”, Applied Mathematical Modelling, 109 (2022), 492–508 | DOI | MR

[17] Kilin A.A., Pivovarova E.N., “Stability and stabilization of steady rotations of a spherical robot on a vibrating base”, Regular and Chaotic Dynamics, 25:6 (2020), 729–752 | DOI | MR

[18] Mamaev I.S., Vetchanin E.V., “Dynamics of rubber Chaplygin sphere under periodic control”, Regular and Chaotic Dynamics, 25:2 (2020), 215–236 | DOI | MR

[19] Murray R.M., Sastry S.S., “Nonholonomic motion planning: steering using sinusoids”, IEEE Transactions on Automatic Control, 38:5 (1993), 700–716 | DOI | MR

[20] Pollard B., Tallapragada P., “An aquatic robot propelled by an internal rotor”, IEEE/ASME Transactions on Mechatronics, 22:2 (2016), 931–939 | DOI

[21] Putkaradze V., Rogers S., “On the dynamics of a rolling ball actuated by internal point masses”, Meccanica, 53:15 (2018), 3839–3868 | DOI | MR

[22] Vetchanin E.V., Mikishanina E.A., “Vibrational stability of periodic solutions of the Liouville equations”, Nelineinaya Dinamika, 15:3 (2019), 351–363 | DOI | MR